Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards a Real-Time Simulation of Elastoplastic Deformation Using Multi-Task Neural Networks (2411.05575v1)

Published 8 Nov 2024 in cs.CE and cs.LG

Abstract: This study introduces a surrogate modeling framework merging proper orthogonal decomposition, long short-term memory networks, and multi-task learning, to accurately predict elastoplastic deformations in real-time. Superior to single-task neural networks, this approach achieves a mean absolute error below 0.40\% across various state variables, with the multi-task model showing enhanced generalization by mitigating overfitting through shared layers. Moreover, in our use cases, a pre-trained multi-task model can effectively train additional variables with as few as 20 samples, demonstrating its deep understanding of complex scenarios. This is notably efficient compared to single-task models, which typically require around 100 samples. Significantly faster than traditional finite element analysis, our model accelerates computations by approximately a million times, making it a substantial advancement for real-time predictive modeling in engineering applications. While it necessitates further testing on more intricate models, this framework shows substantial promise in elevating both efficiency and accuracy in engineering applications, particularly for real-time scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube