Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AWARE Narrator and the Utilization of Large Language Models to Extract Behavioral Insights from Smartphone Sensing Data (2411.04691v1)

Published 7 Nov 2024 in cs.HC and cs.AI

Abstract: Smartphones, equipped with an array of sensors, have become valuable tools for personal sensing. Particularly in digital health, smartphones facilitate the tracking of health-related behaviors and contexts, contributing significantly to digital phenotyping, a process where data from digital interactions is analyzed to infer behaviors and assess mental health. Traditional methods process raw sensor data into information features for statistical and machine learning analyses. In this paper, we introduce a novel approach that systematically converts smartphone-collected data into structured, chronological narratives. The AWARE Narrator translates quantitative smartphone sensing data into English language descriptions, forming comprehensive narratives of an individual's activities. We apply the framework to the data collected from university students over a week, demonstrating the potential of utilizing the narratives to summarize individual behavior, and analyzing psychological states by leveraging LLMs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.