Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Six Candidates Suffice to Win a Voter Majority (2411.03390v4)

Published 5 Nov 2024 in cs.GT, cs.DM, cs.DS, and math.CO

Abstract: A cornerstone of social choice theory is Condorcet's paradox which says that in an election where $n$ voters rank $m$ candidates it is possible that, no matter which candidate is declared the winner, a majority of voters would have preferred an alternative candidate. Instead, can we always choose a small committee of winning candidates that is preferred to any alternative candidate by a majority of voters? Elkind, Lang, and Saffidine raised this question and called such a committee a Condorcet winning set. They showed that winning sets of size $2$ may not exist, but sets of size logarithmic in the number of candidates always do. In this work, we show that Condorcet winning sets of size $6$ always exist, regardless of the number of candidates or the number of voters. More generally, we show that if $\frac{\alpha}{1 - \ln \alpha} \geq \frac{2}{k + 1}$, then there always exists a committee of size $k$ such that less than an $\alpha$ fraction of the voters prefer an alternate candidate. These are the first nontrivial positive results that apply for all $k \geq 2$. Our proof uses the probabilistic method and the minimax theorem, inspired by recent work on approximately stable committee selection. We construct a distribution over committees that performs sufficiently well (when compared against any candidate on any small subset of the voters) so that this distribution must contain a committee with the desired property in its support.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube