Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
138 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Stochastic Monkeys at Play: Random Augmentations Cheaply Break LLM Safety Alignment (2411.02785v2)

Published 5 Nov 2024 in cs.LG and cs.AI

Abstract: Safety alignment of LLMs has recently become a critical objective of model developers. In response, a growing body of work has been investigating how safety alignment can be bypassed through various jailbreaking methods, such as adversarial attacks. However, these jailbreak methods can be rather costly or involve a non-trivial amount of creativity and effort, introducing the assumption that malicious users are high-resource or sophisticated. In this paper, we study how simple random augmentations to the input prompt affect safety alignment effectiveness in state-of-the-art LLMs, such as Llama 3 and Qwen 2. We perform an in-depth evaluation of 17 different models and investigate the intersection of safety under random augmentations with multiple dimensions: augmentation type, model size, quantization, fine-tuning-based defenses, and decoding strategies (e.g., sampling temperature). We show that low-resource and unsophisticated attackers, i.e. $\textit{stochastic monkeys}$, can significantly improve their chances of bypassing alignment with just 25 random augmentations per prompt. Source code and data: https://github.com/uiuc-focal-lab/stochastic-monkeys/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com