Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The Fundamental Limit of Jet Tagging (2411.02628v2)

Published 4 Nov 2024 in hep-ph, hep-ex, and physics.data-an

Abstract: Identifying the origin of high-energy hadronic jets ('jet tagging') has been a critical benchmark problem for machine learning in particle physics. Jets are ubiquitous at colliders and are complex objects that serve as prototypical examples of collections of particles to be categorized. Over the last decade, machine learning-based classifiers have replaced classical observables as the state of the art in jet tagging. Increasingly complex machine learning models are leading to increasingly more effective tagger performance. Our goal is to address the question of convergence -- are we getting close to the fundamental limit on jet tagging or is there still potential for computational, statistical, and physical insights for further improvements? We address this question using state-of-the-art generative models to create a realistic, synthetic dataset with a known jet tagging optimum. Various state-of-the-art taggers are deployed on this dataset, showing that there is a significant gap between their performance and the optimum. Our dataset and software are made public to provide a benchmark task for future developments in jet tagging and other areas of particle physics.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube