Machine-learned nodal structures of Fermion systems (2411.02257v2)
Abstract: Simulating strongly correlated fermionic systems remains a fundamental challenge in quantum physics, largely due to the sign problem in quantum Monte Carlo (QMC) methods. We present a neural network-based variational Monte Carlo (NN-VMC) approach, leveraging a flexible neural network ansatz to represent the many-body wavefunction. Focusing on quantum dots with up to 30 electrons, we demonstrate that NN-VMC significantly reduces variational bias and achieves ground-state energies surpassing those of fixed-node diffusion Monte Carlo (DMC). A key feature is that the neural network adaptively learns and optimizes nodal structures during energy minimization. We provide qualitative insights into the nodal structure of fermionic wavefunctions by comparing the nodal structures generated by NN-VMC with those obtained from traditional trial functions. Additionally, we reveal spin-resolved radial distributions and electron density profiles, highlighting the versatility and accuracy of NN-VMC. This work underscores the potential of machine learning to advance quantum simulations and deepen our understanding of strongly correlated systems.
- S. Paschen and Q. Si, Quantum phases driven by strong correlations, Nature Reviews Physics 3, 9 (2020).
- S. Adler, F. Krien, P. Chalupa-Gantner, G. Sangiovanni, and A. Toschi, Non-perturbative intertwining between spin and charge correlations: A “smoking gun” single-boson-exchange result, SciPost Physics 16, 054 (2024).
- J. Carlström, Strong-coupling diagrammatic Monte Carlo technique for correlated fermions and frustrated spins, Physical Review B 103, 195147 (2021).
- L. K. Wagner and D. M. Ceperley, Discovering correlated fermions using quantum Monte Carlo, Reports on Progress in Physics 79, 094501 (2016).
- C. Sikorski and U. Merkt, Spectroscopy of electronic states in insb quantum dots, Physical Review Letters 62, 2164 (1989-05).
- P. A. Maksym and T. Chakraborty, Quantum dots in a magnetic field: Role of electron-electron interactions, Physical Review Letters 65, 108 (1990-07).
- F. Borsoi and M. Veldhorst, A tunable two-dimensional crossbar array comprising 16 quantum dots, Nature Nanotechnology 19, 7 (2023-09).
- M. Iazzi, A. A. Soluyanov, and M. Troyer, Topological origin of the fermion sign problem, Physical Review B 93, 115102 (2016).
- R. Mondaini, S. Tarat, and R. T. Scalettar, Universality and critical exponents of the fermion sign problem, Physical Review B 107, 245144 (2023).
- J. Yu, L. K. Wagner, and E. Ertekin, Fixed-node diffusion Monte Carlo description of nitrogen defects in zinc oxide, Physical Review B 95, 075209 (2017).
- K. M. Rasch and L. Mitas, Fixed-node diffusion Monte Carlo method for lithium systems, Physical Review B 92, 045122 (2015).
- S. Johnston, E. Khatami, and R. Scalettar, A perspective on machine learning and data science for strongly correlated electron problems, Carbon Trends 9, 100231 (2022).
- P.-L. Zheng, J.-B. Wang, and Y. Zhang, Efficient and quantum-adaptive machine learning with fermion neural networks, Physical Review Applied 20, 044002 (2023).
- A. Harju, Variational monte carlo for interacting electrons in quantum dots, Journal of Low Temperature Physics 140, 181 (2005-07).
- F. Pederiva, C. J. Umrigar, and E. Lipparini, Diffusion Monte Carlo study of circular quantum dots, Physical Review B 62, 8120 (2000).
- D. P. James S. Spencer and F. Contributors, FermiNet, http://github.com/deepmind/ferminet (2020).
- W. Freitas and S. A. Vitiello, Synergy between deep neural networks and the variational Monte Carlo method for small 4Hen clusters, Quantum 7, 1209 (2023-12), https://quantum-journal.org/papers/q-2023-12-18-1209/ .
- W. Freitas, B. Abreu, and S. A. Vitiello, Modeling 4HeN clusters with wave functions based on neural networks, Journal of Low Temperature Physics 10.1007/s10909-024-03061-w (2024-03).
- J. Martens and R. B. Grosse, Optimizing neural networks with kronecker-factored approximate curvature, in ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (2015).
- I. Kylänpää and E. Räsänen, Path integral monte carlo benchmarks for two-dimensional quantum dots, Phys. Rev. B 96, 205445 (2017).
- M. Ulybyshev, C. Winterowd, and S. Zafeiropoulos, Lefschetz thimbles decomposition for the hubbard model on the hexagonal lattice, Physical Review D 101, 014508 (2020-01).
- R. Levy and B. K. Clark, Mitigating the sign problem through basis rotations, Physical Review Letters 126, 216401 (2021-05).
- T. A. Anderson, M. C. Per, and C. J. Umrigar, Reducing the time-step errors in diffusion monte carlo, The Journal of Chemical Physics 160, 10.1063/5.0190346 (2024-03).
- R. Pessoa, S. A. Vitiello, and L. A. P. Ardila, Fermi polaron in atom-ion hybrid systems, ArXiv e-prints 10.48550/ARXIV.2401.05324 (2024).
- M. Ditte and M. Dubecky, Fractional charge by fixed-node diffusion monte carlo method, Physical Review Letters 123, 156402 (2019-10).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.