Rapidly mixing loop representation quantum Monte Carlo for Heisenberg models on star-like bipartite graphs (2411.01452v1)
Abstract: Quantum Monte Carlo (QMC) methods have proven invaluable in condensed matter physics, particularly for studying ground states and thermal equilibrium properties of quantum Hamiltonians without a sign problem. Over the past decade, significant progress has also been made on their rigorous convergence analysis. Heisenberg antiferromagnets (AFM) with bipartite interaction graphs are a popular target of computational QMC studies due to their physical importance, but despite the apparent empirical efficiency of these simulations it remains an open question whether efficient classical approximation of the ground energy is possible in general. In this work we introduce a ground state variant of the stochastic series expansion QMC method, and for the special class of AFM on interaction graphs with an $O(1)$-bipartite component (star-like), we prove rapid mixing of the associated QMC Markov chain (polynomial time in the number of qubits) by using Jerrum and Sinclair's method of canonical paths. This is the first Markov chain analysis of a practical class of QMC algorithms with the loop representation of Heisenberg models. Our findings contribute to the broader effort to resolve the computational complexity of Heisenberg AFM on general bipartite interaction graphs.
- Geometric aspects of quantum spin states. Communications in Mathematical Physics, 164:17–63, 1994.
- Dimerization and néel order in different quantum spin chains through a shared loop representation. In Annales Henri Poincare, volume 21, pages 2737–2774. Springer, 2020.
- Beyond product state approximations for a quantum analogue of max cut. arXiv preprint arXiv:2003.14394, 2020.
- HA Bethe. Zur theorie der metalle, i. eigenwerte und eigenfunktionen der linearen atomkette. Zeitschrift fur Physik, 71:205–231, 1931.
- Quantum spins and random loops on the complete graph. Communications in Mathematical Physics, 375(3):1629â1663, November 2019. ISSN 1432-0916. doi: 10.1007/s00220-019-03634-x. URL http://dx.doi.org/10.1007/s00220-019-03634-x.
- Sergey Bravyi. Monte carlo simulation of stoquastic hamiltonians. arXiv preprint arXiv:1402.2295, 2014.
- Sergey Bravyi. Monte carlo simulation of stoquastic hamiltonians, 2015.
- Polynomial-time classical simulation of quantum ferromagnets. Physical review letters, 119(10):100503, 2017.
- Complexity of stoquastic frustration-free hamiltonians, 2008.
- The complexity of stoquastic local hamiltonian problems, 2007.
- Rapid mixing of path integral monte carlo for 1d stoquastic hamiltonians. Quantum, 5:395, 2021.
- Classical simulation of high temperature quantum ising models. arXiv preprint arXiv:2002.02232, 2020.
- Complexity classification of local hamiltonian problems. SIAM Journal on Computing, 45(2):268–316, 2016.
- Resummation-based quantum monte carlo for quantum paramagnetic phases. Phys. Rev. B, 104:L060406, Aug 2021. doi: 10.1103/PhysRevB.104.L060406. URL https://link.aps.org/doi/10.1103/PhysRevB.104.L060406.
- Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys., 18:335–383, 1978.
- Sevag Gharibian. Guest column: The 7 faces of quantum np. SIGACT News, 54(4):54â91, January 2024. ISSN 0163-5700. doi: 10.1145/3639528.3639535. URL https://doi.org/10.1145/3639528.3639535.
- Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-125-2. doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.31. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.31.
- Quantum heisenberg models and their probabilistic representations, 2011.
- Possibility of deconfined criticality in su(n𝑛nitalic_n) heisenberg models at small n𝑛nitalic_n. Phys. Rev. B, 88:220408, Dec 2013. doi: 10.1103/PhysRevB.88.220408. URL https://link.aps.org/doi/10.1103/PhysRevB.88.220408.
- Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 378–386, 2020.
- W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109, 1970. ISSN 00063444, 14643510. URL http://www.jstor.org/stable/2334940.
- Conductance and the rapid mixing property for markov chains: the approximation of permanent resolved. In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 235–244, 1988.
- Louis H Kauffman. State models and the jones polynomial. Topology, 26(3):395–407, 1987.
- Ribhu K Kaul. Marshall-positive su (n) quantum spin systems and classical loop models: A practical strategy to design sign-problem-free spin hamiltonians. Physical Review B, 91(5):054413, 2015.
- Existence of néel order in some spin-1/2 heisenberg antiferromagnets. Journal of statistical physics, 53:1019–1030, 1988.
- Robbie King. An improved approximation algorithm for quantum max-cut. arXiv preprint arXiv:2209.02589, 2022.
- An Improved Quantum Max Cut Approximation via Maximum Matching. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pages 105:1–105:11, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-322-5. doi: 10.4230/LIPIcs.ICALP.2024.105. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.105.
- Markov chains and mixing times, volume 107. American Mathematical Soc., 2017.
- Ordering energy levels of interacting spin systems. Journal of Mathematical Physics, 3(4):749–751, 1962.
- Two soluble models of an antiferromagnetic chain. Annals of Physics, 16(3):407–466, 1961.
- Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B, 41:9301–9307, May 1990. doi: 10.1103/PhysRevB.41.9301. URL https://link.aps.org/doi/10.1103/PhysRevB.41.9301.
- Critical ising on the square lattice mixes in polynomial time. Communications in Mathematical Physics, 313(3):815–836, 2012.
- On next-nearest-neighbor interaction in linear chain. i. Journal of Mathematical Physics, 10(8):1388–1398, 1969.
- W Marshall. Antiferromagnetism. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 232(1188):48–68, 1955.
- Vedant Motamarri. Loop ensembles in stochastic series expansion of two-dimensional heisenberg antiferromagnets, 2023.
- Ketan D Mulmuley. On P vs. NP and geometric complexity theory: Dedicated to sri ramakrishna. Journal of the ACM (JACM), 58(2):1–26, 2011.
- Phase transitions in 3333d loop models and the cpn-1 σ𝜎\sigmaitalic_σ model. Physical Review B, 88(13), October 2013. ISSN 1550-235X. doi: 10.1103/physrevb.88.134411. URL http://dx.doi.org/10.1103/PhysRevB.88.134411.
- The complexity of antiferromagnetic interactions and 2d lattices, 2015. URL https://arxiv.org/abs/1506.04014.
- Subir Sachdev. Quantum phase transitions. Physics world, 12(4):33, 1999.
- A W Sandvik. A generalization of handscomb’s quantum monte carlo scheme-application to the 1d hubbard model. Journal of Physics A: Mathematical and General, 25(13):3667, jul 1992. doi: 10.1088/0305-4470/25/13/017. URL https://dx.doi.org/10.1088/0305-4470/25/13/017.
- Monte carlo simulations of quantum spin systems in the valence bond basis, 2007.
- Anders W. Sandvik. Stochastic series expansion method with operator-loop update. Physical Review B, 59(22):R14157âR14160, June 1999. ISSN 1095-3795. doi: 10.1103/physrevb.59.r14157. URL http://dx.doi.org/10.1103/PhysRevB.59.R14157.
- Anders W. Sandvik. Quantum criticality and percolation in dimer-diluted two-dimensional antiferromagnets. Phys. Rev. Lett., 96:207201, May 2006. doi: 10.1103/PhysRevLett.96.207201. URL https://link.aps.org/doi/10.1103/PhysRevLett.96.207201.
- Anders W. Sandvik. Evidence for deconfined quantum criticality in a two-dimensional heisenberg model with four-spin interactions. Phys. Rev. Lett., 98:227202, Jun 2007. doi: 10.1103/PhysRevLett.98.227202. URL https://link.aps.org/doi/10.1103/PhysRevLett.98.227202.
- Anders W Sandvik. Computational studies of quantum spin systems. In AIP Conference Proceedings, volume 1297, pages 135–338. American Institute of Physics, 2010.
- Loop updates for variational and projector quantum monte carlo simulations in the valence-bond basis. Physical Review B, 82(2), July 2010. ISSN 1550-235X. doi: 10.1103/physrevb.82.024407. URL http://dx.doi.org/10.1103/PhysRevB.82.024407.
- Quantum monte carlo simulation method for spin systems. Phys. Rev. B, 43:5950–5961, Mar 1991. doi: 10.1103/PhysRevB.43.5950. URL https://link.aps.org/doi/10.1103/PhysRevB.43.5950.
- Vacancy-induced spin texture in a one-dimensional s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG heisenberg antiferromagnet. Phys. Rev. B, 84:235129, Dec 2011. doi: 10.1103/PhysRevB.84.235129. URL https://link.aps.org/doi/10.1103/PhysRevB.84.235129.
- Georg Schreckenbach. Computational chemistry library, 1996. URL https://www.ccl.net/chemistry/resources/messages/1996/03/11.008-dir/index.html.
- Alistair Sinclair. Improved bounds for mixing rates of markov chains and multicommodity flow. Combinatorics, probability and Computing, 1(4):351–370, 1992.
- Exact ground state of a quantum mechanical antiferromagnet. Physica B+C, 108(1):1069–1070, 1981. ISSN 0378-4363. doi: https://doi.org/10.1016/0378-4363(81)90838-X. URL https://www.sciencedirect.com/science/article/pii/037843638190838X.
- Masuo Suzuki. Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations. Progress of Theoretical Physics, 56(5):1454–1469, 11 1976. ISSN 0033-068X. doi: 10.1143/PTP.56.1454. URL https://doi.org/10.1143/PTP.56.1454.
- Monte Carlo Simulation of Quantum Spin Systems. I. Progress of Theoretical Physics, 58(5):1377–1387, 11 1977. ISSN 0033-068X. doi: 10.1143/PTP.58.1377. URL https://doi.org/10.1143/PTP.58.1377.
- Nonuniversal critical dynamics in monte carlo simulations. Phys. Rev. Lett., 58:86–88, Jan 1987. doi: 10.1103/PhysRevLett.58.86. URL https://link.aps.org/doi/10.1103/PhysRevLett.58.86.
- Quantum monte carlo with directed loops. Phys. Rev. E, 66:046701, Oct 2002. doi: 10.1103/PhysRevE.66.046701. URL https://link.aps.org/doi/10.1103/PhysRevE.66.046701.
- Valence-bond solids, vestigial order, and emergent so(5) symmetry in a two-dimensional quantum magnet. Phys. Rev. Res., 2:033459, Sep 2020. doi: 10.1103/PhysRevResearch.2.033459. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033459.
- An su (2)-symmetric semidefinite programming hierarchy for quantum max cut. arXiv preprint arXiv:2307.15688, 2023.
- So(5) multicriticality in two-dimensional quantum magnets, 2024. URL https://arxiv.org/abs/2405.06607.
- Method to characterize spinons as emergent elementary particles. Phys. Rev. Lett., 107:157201, Oct 2011. doi: 10.1103/PhysRevLett.107.157201. URL https://link.aps.org/doi/10.1103/PhysRevLett.107.157201.
- Terrence Tao. Generalized solutions, 2008. URL https://terrytao.wordpress.com/2008/01/04/pcm-article-generalised-solutions/.
- Hal Tasaki. June 6th zakkan, 2000. URL https://www.gakushuin.ac.jp/~881791/d/0006.html.
- Hal Tasaki. Physics and mathematics of quantum many-body systems, volume 66. Springer, 2020.
- Relations between the ‘percolation’and ‘colouring’problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’problem. Condensed Matter Physics and Exactly Soluble Models: Selecta of Elliott H. Lieb, pages 475–504, 2004.
- Critical exponents of the quantum phase transition in a planar antiferromagnet. journal of the physical society of japan, 66(10):2957–2960, 1997.
- Daniel Ueltschi. Quantum heisenberg models and random loop representations, 2012.
- Relaxations and exact solutions to quantum max cut via the algebraic structure of swap operators. Quantum, 8:1352, 2024.
- Fa-Yueh Wu. The potts model. Reviews of modern physics, 54(1):235, 1982.
- Deconfined quantum criticality in spin-1/2 chains with long-range interactions, 2020. URL https://arxiv.org/abs/2001.02821.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.