Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On matrix elements of the vector physical quantities (2411.01083v2)

Published 1 Nov 2024 in physics.atom-ph

Abstract: Methods of angular momenta are modified and used to solve some actual problems in quantum mechanics. In particular, we re-derive some known formulas for analytical and numerical calculations of matrix elements of the vector physical quantities. These formulas are applied to a large number of quantum systems which have an explicit spherical symmetry. Multiple commutators of different powers of the angular momenta $\hat{\bf J}{2}$ and vector-operator $\hat{\bf A}$ are determined in the general form. Calculations of the expectation values averaged over orbital angular momenta are also described in detail. This effective and elegant old technique, which was successfully used by E. Fermi and A. Bohr, is almost forgotten in modern times. We also discuss quantum systems with additional relations (or constraints) between some vector-operators and orbital angular momentum. For similar systems such relations allow one to obtain some valuable additional information about their properties, including the bound state spectra, correct asymptotics of actual wave functions, etc. As an example of unsolved problems we consider applications of the algebras of angular momenta to investigation of the one-electron, two-center (Coulomb) problem $(Q_1, Q_2)$. For this problem it is possible to obtain the closed analytical solutions which are written as the `correct' linear combinations of products of the two one-electron wave functions of the hydrogen-like ions with the nuclear charges $Q_1 + Q_2$ and $Q_1 - Q_2$, respectively. However, in contrast with the usual hydrogen-like ions such hydrogenic wave functions must be constructed in three-dimensional pseudo-Euclidean space with the metric (-1,-1,1).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)