Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Mechanistic Interpretability of Reinforcement Learning Agents (2411.00867v1)

Published 30 Oct 2024 in cs.LG

Abstract: This paper explores the mechanistic interpretability of reinforcement learning (RL) agents through an analysis of a neural network trained on procedural maze environments. By dissecting the network's inner workings, we identified fundamental features like maze walls and pathways, forming the basis of the model's decision-making process. A significant observation was the goal misgeneralization, where the RL agent developed biases towards certain navigation strategies, such as consistently moving towards the top right corner, even in the absence of explicit goals. Using techniques like saliency mapping and feature mapping, we visualized these biases. We furthered this exploration with the development of novel tools for interactively exploring layer activations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.