Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Kernel Operator-Theoretic Bayesian Filter for Nonlinear Dynamical Systems (2411.00198v1)

Published 31 Oct 2024 in cs.LG, eess.SP, and stat.ML

Abstract: Motivated by the surge of interest in Koopman operator theory, we propose a machine-learning alternative based on a functional Bayesian perspective for operator-theoretic modeling of unknown, data-driven, nonlinear dynamical systems. This formulation is directly done in an infinite-dimensional space of linear operators or Hilbert space with universal approximation property. The theory of reproducing kernel Hilbert space (RKHS) allows the lifting of nonlinear dynamics to a potentially infinite-dimensional space via linear embeddings, where a general nonlinear function is represented as a set of linear functions or operators in the functional space. This allows us to apply classical linear Bayesian methods such as the Kalman filter directly in the Hilbert space, yielding nonlinear solutions in the original input space. This kernel perspective on the Koopman operator offers two compelling advantages. First, the Hilbert space can be constructed deterministically, agnostic to the nonlinear dynamics. The Gaussian kernel is universal, approximating uniformly an arbitrary continuous target function over any compact domain. Second, Bayesian filter is an adaptive, linear minimum-variance algorithm, allowing the system to update the Koopman operator and continuously track the changes across an extended period of time, ideally suited for modern data-driven applications such as real-time machine learning using streaming data. In this paper, we present several practical implementations to obtain a finite-dimensional approximation of the functional Bayesian filter (FBF). Due to the rapid decay of the Gaussian kernel, excellent approximation is obtained with a small dimension. We demonstrate that this practical approach can obtain accurate results and outperform finite-dimensional Koopman decomposition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. G. H. Yann LeCun, Yoshua Bengio, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
  2. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.
  3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.   Curran Associates, Inc., 2012.
  4. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27.   Curran Associates, Inc., 2014.
  5. D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 2, pp. 604–624, 2021.
  6. S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M. Srivastava, A. Preece, S. Julier, R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy, C. J. Willis, and P. Gurram, “Interpretability of deep learning models: A survey of results,” in 2017 IEEE SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–6.
  7. D. Heaven, “Why deep-learning ais are so easy to fool,” Nature, vol. 574, no. 7777, pp. 163–166, 2019.
  8. A. Iyer, K. Grewal, A. Velu, L. O. Souza, J. Forest, and S. Ahmad, “Avoiding catastrophe: Active dendrites enable multi-task learning in dynamic environments,” Frontiers in Neurorobotics, vol. 16, 2022.
  9. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME, Series D., Journal of Basic Eng., vol. 82, pp. 35–45, 1960.
  10. M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,” Science, vol. 324, no. 5923, pp. 81–85, 2009.
  11. M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
  12. K. Lee and K. T. Carlberg, “Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders,” Journal of Computational Physics, vol. 404, p. 108973, 2020.
  13. S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern koopman theory for dynamical systems,” SIAM Review, vol. 64, no. 2, pp. 229–340, 2022.
  14. B. O. Koopman, “Hamiltonian systems and transformations in hilbert space,” Proceedings of the National Academy of Sciences of the United States of America, vol. 17, no. 5, pp. 315–318, 1931.
  15. B. O. Koopman and J. V. Neumann, “Dynamical systems of continuous spectra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 18, no. 3, pp. 255–263, 1932.
  16. J. v. Neumann, “Proof of the quasi-ergodic hypothesis,” Proceedings of the National Academy of Sciences, vol. 18, no. 1, pp. 70–82, 1932.
  17. G. D. Birkhoff, “Proof of the ergodic theorem,” Proceedings of the National Academy of Sciences, vol. 17, no. 12, pp. 656–660, 1931.
  18. C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. Henningson, “Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics, vol. 641, p. 115–127, 2009.
  19. I. Mezić, “Spectral Properties of Dynamical Systems, Model Reduction and Decompositions,” Nonlinear Dynamics, vol. 41, no. 1, pp. 309–325, Aug. 2005.
  20. P. J. Schmid, “Application of the dynamic mode decomposition to experimental data,” Experiments in Fluids, vol. 50, no. 4, pp. 1123–1130, Apr. 2011.
  21. K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,” Philosophical Magazine Series 1, vol. 2, pp. 559–572, 1901.
  22. D. A. Bistrian and I. M. Navon, “An improved algorithm for the shallow water equations model reduction: Dynamic mode decomposition vs pod,” International Journal for Numerical Methods in Fluids, vol. 78, no. 9, pp. 552–580, 2015.
  23. N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.
  24. T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171 – 1220, 2008.
  25. “A kernel-based method for data-driven koopman spectral analysis,” pp. 247–265.
  26. K. Fujii and Y. Kawahara, “Dynamic mode decomposition in vector-valued reproducing kernel hilbert spaces for extracting dynamical structure among observables,” Neural Networks, vol. 117, pp. 94–103, 2019.
  27. K. Li and J. C. Príncipe, “The kernel adaptive autoregressive-moving-average algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 334–346, Feb. 2016.
  28. K. Li and J. C. Príncipe, “Functional bayesian filter,” IEEE Transactions on Signal Processing, vol. 70, pp. 57–71, 2022.
  29. K. Li and J. C. Príncipe, “No-trick (treat) kernel adaptive filtering using deterministic features,” CoRR, vol. abs/1912.04530, 2019.
  30. T. Dao, C. D. Sa, and C. Ré, “Gaussian quadrature for kernel features,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17.   USA: Curran Associates Inc., 2017, pp. 6109–6119.
  31. C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” Journal of Machine Learning Research, vol. 7, no. 95, pp. 2651–2667, 2006.
  32. A. Cotter, J. Keshet, and N. Srebro, “Explicit approximations of the gaussian kernel,” CoRR, vol. abs/1109.4603, 2011.
  33. B. Zwicknagl, “Power series kernels,” Constructive Approximation, vol. 29, pp. 61–84, 2009.
  34. I. Arasaratnam, “Cubature Kalman filtering: Theory & applications,” Ph.D. dissertation, McMaster University, 2009.
  35. M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, no. 4300, pp. 287–289, Jul. 1977.
  36. J. N. Kutz, J. L. Proctor, and S. L. Brunton, “Applied koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems,” Complexity, vol. 2018, pp. 1–16, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com