Dynamical systems and complex networks: A Koopman operator perspective (2405.08940v2)
Abstract: The Koopman operator has entered and transformed many research areas over the last years. Although the underlying concept$\unicode{x2013}$representing highly nonlinear dynamical systems by infinite-dimensional linear operators$\unicode{x2013}$has been known for a long time, the availability of large data sets and efficient machine learning algorithms for estimating the Koopman operator from data make this framework extremely powerful and popular. Koopman operator theory allows us to gain insights into the characteristic global properties of a system without requiring detailed mathematical models. We will show how these methods can also be used to analyze complex networks and highlight relationships between Koopman operators and graph Laplacians.
- C. Schütte. Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules, 1999. Habilitation Thesis.
- Constructing the full ensemble of folding pathways from short off-equilibrium simulations. Proceedings of the National Academy of Sciences, 106:19011–19016, 2009.
- Markov models of molecular kinetics: Generation and validation. Journal of Chemical Physics, 134:174105, 2011.
- C. Schütte and M. Sarich. Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches. Number 24 in Courant Lecture Notes. American Mathematical Society, 2013.
- Improvements in Markov State Model construction reveal many non-native interactions in the folding of NTL9. Journal of Chemical Theory and Computation, 9:2000–2009, 2013.
- A kernel-based approach to molecular conformation analysis. The Journal of Chemical Physics, 149:244109, 2018. doi:10.1063/1.5063533.
- P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5–28, 2010. doi:10.1017/S0022112010001217.
- I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1):309–325, 2005. doi:10.1007/s11071-005-2824-x.
- Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009. doi:10.1017/S0022112009992059.
- Applied Koopmanism. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4), 2012. doi:10.1063/1.4772195.
- Sparsity-promoting dynamic mode decomposition. Physics of Fluids, 26(2), 2014.
- Tensor-based dynamic mode decomposition. Nonlinearity, 31(7), 2018. doi:10.1088/1361-6544/aabc8f.
- Three-dimensional characterization and tracking of an Agulhas ring. Ocean Modelling, 52-53:69–75, 2012.
- How well-connected is the surface of the global ocean? Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(3), 2014.
- Spatiotemporal feature extraction with data-driven Koopman operators. volume 44 of Proceedings of Machine Learning Research, pages 103–115, 2015.
- Z. Zhao and D. Giannakis. Analog forecasting with dynamics-adapted kernels. Nonlinearity, 29(9):2888, 2016. doi:10.1088/0951-7715/29/9/2888.
- Kernel methods for detecting coherent structures in dynamical data. Chaos, 2019. doi:10.1063/1.5100267.
- Estimation of Koopman transfer operators for the equatorial pacific SST. Journal of the Atmospheric Sciences, 78(4):1227–1244, 2021. doi:10.1175/JAS-D-20-0136.1.
- G. A. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations, volume 60 of Texts in Applied Mathematics. Springer, 2014.
- Kernel-based approximation of the Koopman generator and Schrödinger operator. Entropy, 2020.
- Bilinear dynamic mode decomposition for quantum control. New Journal of Physics, 23(3):033035, 2021. doi:10.1088/1367-2630/abe972.
- Koopman analysis of quantum systems. Journal of Physics A: Mathematical and Theoretical, 55(31):314002, 2022. doi:10.1088/1751-8121/ac7d22.
- Embedding classical dynamics in a quantum computer. Phys. Rev. A, 105:052404, 2022. doi:10.1103/PhysRevA.105.052404.
- Koopman von Neumann mechanics and the Koopman representation: A perspective on solving nonlinear dynamical systems with quantum computers, 2022. doi:10.48550/ARXIV.2202.02188.
- Exploring invariant sets and invariant measures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 7(2):221–228, 1997.
- M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM Journal on Numerical Analysis, 36(2):491–515, 1999.
- G. Froyland and M. Dellnitz. Detecting and locating near-optimal almost invariant sets and cycles. SIAM Journal on Scientific Computing, 24(6):1839–1863, 2003.
- A set-oriented numerical approach for dynamical systems with parameter uncertainty. SIAM Journal on Applied Dynamical Systems, 16(1):120–138, 2017. doi:10.1137/16M1072735.
- An operator methodology for the global dynamic analysis of stochastic nonlinear systems. Theoretical and Applied Mechanics Letters, 13(3):100419, 2023. doi:10.1016/j.taml.2022.100419.
- A. Mauroy and J. Goncalves. Linear identification of nonlinear systems: A lifting technique based on the Koopman operator. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 6500–6505, 2016. doi:10.1109/CDC.2016.7799269.
- Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, 2016.
- Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. Physica D: Nonlinear Phenomena, 406:132416, 2020. doi:10.1016/j.physd.2020.132416.
- Data-driven discovery of Koopman eigenfunctions for control. Machine Learning: Science and Technology, 2(3):035023, 2021. doi:10.1088/2632-2153/abf0f5.
- C. Zhang and E. Zuazua. A quantitative analysis of Koopman operator methods for system identification and predictions. Comptes Rendus. Mécanique, 2023. doi:10.5802/crmeca.138.
- M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 93:149–160, 2018. doi:10.1016/j.automatica.2018.03.046.
- S. Peitz and S. Klus. Koopman operator-based model reduction for switched-system control of PDEs. Automatica, 106:184–191, 2019. doi:10.1016/j.automatica.2019.05.016.
- Data-driven model predictive control using interpolated Koopman generators. SIAM Journal on Applied Dynamical Systems, 19(3):2162–2193, 2020. doi:10.1137/20M1325678.
- The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications. Lecture Notes in Control and Information Sciences. Springer International Publishing, 2020. doi:10.1007/978-3-030-35713-9.
- Koopman operator dynamical models: Learning, analysis and control. Annual Reviews in Control, 52:197–212, 2021. doi:doi.org/10.1016/j.arcontrol.2021.09.002.
- Robust tube-based model predictive control with Koopman operators. Automatica, 137:110114, 2022. doi:10.1016/j.automatica.2021.110114.
- N. Djurdjevac. Methods for analyzing complex networks using random walker approaches. PhD thesis, Freie Universität Berlin, Germany, 2012.
- Data-driven partitioning of power networks via Koopman mode analysis. IEEE Transactions on Power Systems, 31(4):2799–2808, 2016. doi:10.1109/TPWRS.2015.2464779.
- Spectral complexity of directed graphs and application to structural decomposition. Complexity, 2019:9610826, 2019. doi:10.1155/2019/9610826.
- S. Sinha. Data-driven influence based clustering of dynamical systems. In 2022 European Control Conference (ECC), pages 1043–1048, 2022. doi:10.23919/ECC55457.2022.9838545.
- S. Klus and N. Djurdjevac Conrad. Koopman-based spectral clustering of directed and time-evolving graphs. Journal of Nonlinear Science, 33(1), 2022. doi:10.1007/s00332-022-09863-0.
- S. Klus and M. Trower. Transfer operators on graphs: Spectral clustering and beyond. Journal of Physics: Complexity, 5(1):015014, 2024. doi:10.1088/2632-072X/ad28fe.
- How fast-folding proteins fold. Science, 334(6055):517–520, 2011. doi:10.1126/science.1208351.
- Everything you wanted to know about Markov state models but were afraid to ask. Methods, 52(1):99–105, 2010.
- Overcoming the timescale barrier in molecular dynamics: Transfer operators, variational principles and machine learning. Acta Numerica, 32:517–673, 2023. doi:10.1017/S0962492923000016.
- Distinct metastable atmospheric regimes despite nearly Gaussian statistics: a paradigm model. Proceedings of the National Academy of Sciences, 103:8309–8314, 2006. doi:10.1073/pnas.0602641103.
- Stochastic basins of attraction for metastable states. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(7):073117, 2016. doi:10.1063/1.4959146.
- Statistical analysis of tipping pathways in agent-based models. The European Physical Journal Special Topics, 230(16):3249–3271, 2021. doi:10.1140/epjs/s11734-021-00191-0.
- Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences, 336:108619, 2021. doi:10.1016/j.mbs.2021.108619.
- Data-driven model reduction of agent-based systems using the Koopman generator. PLOS ONE, 16(5):1–23, 2021. doi:10.1371/journal.pone.0250970.
- Insights into drivers of mobility and cultural dynamics of african hunter–gatherers over the past 120 000 years. Royal Society Open Science, 10(11):230495, 2023. doi:10.1098/rsos.230495.
- U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007. doi:10.1007/s11222-007-9033-z.
- M. Meila and J. Shi. Learning segmentation by random walks. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, 2001.
- On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 14, 04 2002.
- D. Verma and M. Meila. A comparison of spectral clustering algorithms. University of Washington Technical Report UWCSE030501, pages 1–18, 2003.
- R. Lambiotte and M. T. Schaub. Modularity and Dynamics on Complex Networks. Elements in Structure and Dynamics of Complex Networks. Cambridge University Press, 2022.
- Transport in time-dependent dynamical systems: Finite-time coherent sets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4):043116, 2010. doi:10.1063/1.3502450.
- R. Banisch and P. Koltai. Understanding the geometry of transport: Diffusion maps for Lagrangian trajectory data unravel coherent sets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(3):035804, 2017. doi:10.1063/1.4971788.
- Optimal data-driven estimation of generalized Markov state models for non-equilibrium dynamics. Computation, 6(1), 2018. doi:10.3390/computation6010022.
- Rates of convergence for everywhere-positive Markov chains. Statistics & probability letters, 22(4):333–338, 1995.
- On the numerical approximation of the Perron–Frobenius and Koopman operator. Journal of Computational Dynamics, 3(1):51–79, 2016. doi:10.3934/jcd.2016003.
- A. Lasota and M. C. Mackey. Chaos, fractals, and noise: Stochastic aspects of dynamics, volume 97 of Applied Mathematical Sciences. Springer, New York, 2nd edition, 1994.
- G. Froyland. An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems. Physica D: Nonlinear Phenomena, 250:1–19, 2013. doi:10.1016/j.physd.2013.01.013.
- A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer, 1983.
- Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. Journal of Statistical Physics, 152(2):237–274, 2013. doi:10.1007/s10955-013-0769-x.
- Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2003.
- Broken detailed balance and entropy production in directed networks. 2024. arXiv:2402.19157.
- Modularity of directed networks: Cycle decomposition approach. Journal of Computational Dynamics, 2(1):1–24, 2015.
- Finding dominant structures of nonreversible Markov processes. Multiscale Modeling & Simulation, 14(4):1319–1340, 2016.
- A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):1307–1346, 2015. doi:10.1007/s00332-015-9258-5.
- S. M. Ulam. A Collection of Mathematical Problems. Interscience Publisher NY, 1960.
- Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification. Communications in Nonlinear Science and Numerical Simulation, 77:81–107, 2019. doi:10.1016/j.cnsns.2019.04.012.
- Diffusion dynamics on multiplex networks. Physical Review Letters, 110:028701, 2013. doi:10.1103/PhysRevLett.110.028701.