Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Impact of High-Brightness Entangled Photon Pairs on CHSH Inequality Experiment (2410.23689v1)

Published 31 Oct 2024 in quant-ph

Abstract: Verifying the violation of Bell's inequality is one of the most representative methods to demonstrate that entangled photon pairs prepared in a quantum optics-based system exhibit quantum properties. While experiments on Bell inequality violations have been theoretically well-established and extensively conducted to implement various quantum information technologies in laboratory settings, mathematical modeling for accurately predicting the distribution of high-intensity entangled photon pairs in high-loss environments remains an issue that requires further research. As the brightness of the entangled photon pairs increases, the influence of multi-photon effects becomes more significant, leading to a decrease in the CHSH value $S$ and also a reduction in the standard deviation of the CHSH value $\Delta S$. Therefore, a new analysis of the $(S-2)/\Delta S$ value is required to more precisely confirm the degree of CHSH inequality violation including the reliability of $S$. In this paper, we propose a mathematical model to predict the $(S-2)/\Delta S$ value as a function of the brightness of the entangled photon pair source, and we also suggest the need to optimize the brightness of this source. Additionally, we provide experimental evidence supporting this model. The experiment confirms that when the mean photon number is $\mu=0.026$ in an entanglement distribution setup with a total loss of $-19.03$ dB, the CHSH value drops to 2.69, while the $(S-2)/\Delta S$ value increases to 60.95.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Physical review 47, 777 (1935).
  2. J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
  3. S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories, Physical review letters 28, 938 (1972).
  4. A. Aspect, J. Dalibard, and G. Roger, Experimental test of bell’s inequalities using time-varying analyzers, Physical review letters 49, 1804 (1982).
  5. C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without bell’s theorem, Physical review letters 68, 557 (1992).
  6. P. M. Pearle, Hidden-variable example based upon data rejection, Physical Review D 2, 1418 (1970).
  7. R. Bedington, J. M. Arrazola, and A. Ling, Progress in satellite quantum key distribution, npj Quantum Information 3, 30 (2017).
  8. C. Simon and D. Bouwmeester, Theory of an entanglement laser, Physical review letters 91, 053601 (2003).
  9. H. Takesue and K. Shimizu, Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes, Optics Communications 283, 276 (2010).
  10. M. Takeoka, R.-B. Jin, and M. Sasaki, Full analysis of multi-photon pair effects in spontaneous parametric down conversion based photonic quantum information processing, New Journal of Physics 17, 043030 (2015).
  11. A. Yoshizawa, D. Fukuda, and H. Tsuchida, Evaluation of polarization entanglement generated by spontaneous parametric downconversion using photon number counting, Optics Communications 285, 1297 (2012).
  12. R. A. Brewster, G. Baumgartner, and Y. K. Chembo, Quantum analysis of polarization entanglement degradation induced by multiple-photon-pair generation, Physical Review A 104, 022411 (2021).
  13. G. Weihs, Ein Experiment zum Test der Bellschen Ungleichung unter Einsteinscher Lokalität, Phd thesis, Universität Wien (1999).
  14. N. J. Beaudry, T. Moroder, and N. Lütkenhaus, Squashing models for optical measurements in quantum communication, Physical review letters 101, 093601 (2008).
  15. K. Kravtsov, Security of entanglement-based qkd with realistic parametric down-conversion sources, Laser Physics Letters 20, 085203 (2023).
  16. F. König and F. N. Wong, Extended phase matching of second-harmonic generation in periodically poled ktiopo 4 with zero group-velocity mismatch, Applied physics letters 84, 1644 (2004).
  17. S. Emanueli and A. Arie, Temperature-dependent dispersion equations for ktiopo 4 and ktioaso 4, Applied optics 42, 6661 (2003).
  18. D. Gottesman, T. Jennewein, and S. Croke, Longer-baseline telescopes using quantum repeaters, Physical review letters 109, 070503 (2012).
  19. J. Kim, J. Yun, and J. Bae, Purification of noisy measurements and faithful distillation of entanglement, arXiv preprint arXiv:2404.10538  (2024b).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com