Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Real classical shadows (2410.23481v2)

Published 30 Oct 2024 in quant-ph

Abstract: Efficiently learning expectation values of a quantum state using classical shadow tomography has become a fundamental task in quantum information theory. In a classical shadows protocol, one measures a state in a chosen basis W after it has evolved under a unitary transformation randomly sampled from a chosen distribution U. In this work we study the case where U corresponds to either local or global orthogonal Clifford gates, and W consists of real-valued vectors. Our results show that for various situations of interest, this ``real'' classical shadow protocol improves the sample complexity over the standard scheme based on general Clifford unitaries. For example, when one is interested in estimating the expectation values of arbitrary real-valued observables, global orthogonal Cliffords decrease the required number of samples by a factor of two. More dramatically, for k-local observables composed only of real-valued Pauli operators, sampling local orthogonal Cliffords leads to a reduction by an exponential-in-k factor in the sample complexity over local unitary Cliffords. Finally, we show that by measuring in a basis containing complex-valued vectors, orthogonal shadows can, in the limit of large system size, exactly reproduce the original unitary shadows protocol.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.