Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting (2410.23318v2)

Published 29 Oct 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI, enabling the mapping of multiple tissue properties from a single, accelerated scan. However, achieving accurate reconstructions remains challenging, particularly in highly accelerated and undersampled acquisitions, which are crucial for reducing scan times. While deep learning techniques have advanced image reconstruction, the recent introduction of diffusion models offers new possibilities for imaging tasks, though their application in the medical field is still emerging. Notably, diffusion models have not yet been explored for the MRF problem. In this work, we propose for the first time a conditional diffusion probabilistic model for MRF image reconstruction. Qualitative and quantitative comparisons on in-vivo brain scan data demonstrate that the proposed approach can outperform established deep learning and compressed sensing algorithms for MRF reconstruction. Extensive ablation studies also explore strategies to improve computational efficiency of our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. D. Ma et al., “Magnetic resonance fingerprinting,” Nature, vol. 495, no. 7440, pp. 187–192, 2013.
  2. Y. Jiang, D. Ma, N. Seiberlich, V. Gulani, and M. A. Griswold, “Mr fingerprinting using fast imaging with steady state precession (fisp) with spiral readout,” Magnetic resonance in medicine, vol. 74, no. 6, pp. 1621–1631, 2015.
  3. P. A. Gómez, M. Molina-Romero, G. Buonincontri, M. I. Menzel, and B. H. Menze, “Designing contrasts for rapid, simultaneous parameter quantification and flow visualization with quantitative transient-state imaging,” Scientific reports, vol. 9, no. 1, p. 8468, 2019.
  4. X. Cao et al., “Optimized multi-axis spiral projection mr fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging,” Magnetic Resonance in Medicine, vol. 88, no. 1, pp. 133–150, 2022.
  5. D. McGivney et al., “SVD compression for magnetic resonance fingerprinting in the time domain,” IEEE transactions on medical imaging, vol. 33, no. 12, pp. 2311–2322, 2014.
  6. G. Mazor, L. Weizman, A. Tal, and Y. C. Eldar, “Low-rank magnetic resonance fingerprinting,” Medical physics, vol. 45, no. 9, pp. 4066–4084, 2018.
  7. B. Zhao et al., “Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling,” Magnetic resonance in medicine, vol. 79, no. 2, pp. 933–942, 2018.
  8. J. I. Hamilton et al., “Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction,” NMR in Biomedicine, vol. 32, no. 2, p. e4041, 2019.
  9. G. Lima da Cruz, A. Bustin, O. Jaubert, T. Schneider, R. M. Botnar, and C. Prieto, “Sparsity and locally low rank regularization for mr fingerprinting,” Magnetic resonance in medicine, vol. 81, no. 6, pp. 3530–3543, 2019.
  10. Y. Hu, P. Li, H. Chen, L. Zou, and H. Wang, “High-quality mr fingerprinting reconstruction using structured low-rank matrix completion and subspace projection,” IEEE Transactions on Medical Imaging, vol. 41, no. 5, pp. 1150–1164, 2021.
  11. F. Balsiger et al., “Magnetic resonance fingerprinting reconstruction via spatiotemporal convolutional neural networks,” in Machine Learning for Medical Image Reconstruction: First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 1.   Springer, 2018, pp. 39–46.
  12. Z. Fang et al., “Deep learning for fast and spatially constrained tissue quantification from highly accelerated data in magnetic resonance fingerprinting,” IEEE transactions on medical imaging, vol. 38, no. 10, pp. 2364–2374, 2019.
  13. M. Golbabaee, D. Chen, P. A. Gómez, M. I. Menzel, and M. E. Davies, “Geometry of deep learning for magnetic resonance fingerprinting,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2019, pp. 7825–7829.
  14. R. Soyak et al., “Channel attention networks for robust mr fingerprint matching,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 4, pp. 1398–1405, 2021.
  15. K. Fatania, C. M. Pirkl, M. I. Menzel, P. Hall, and M. Golbabaee, “A plug-and-play approach to multiparametric quantitative mri: image reconstruction using pre-trained deep denoisers,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2022, pp. 1–4.
  16. J. I. Hamilton, “A self-supervised deep learning reconstruction for shortening the breathhold and acquisition window in cardiac magnetic resonance fingerprinting,” Frontiers in Cardiovascular Medicine, vol. 9, p. 928546, 2022.
  17. P. Li and Y. Hu, “Learned tensor low-cp-rank and bloch response manifold priors for non-cartesian mrf reconstruction,” IEEE Transactions on Medical Imaging, 2023.
  18. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37.   Lille, France: PMLR, 07–09 Jul 2015, pp. 2256–2265.
  19. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  20. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International conference on machine learning.   PMLR, 2021, pp. 8162–8171.
  21. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations, 2021.
  22. P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image synthesis,” Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.
  23. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  24. E. Hoogeboom, J. Heek, and T. Salimans, “simple diffusion: End-to-end diffusion for high resolution images,” in International Conference on Machine Learning.   PMLR, 2023, pp. 13 213–13 232.
  25. J. Choi, S. Kim, Y. Jeong, Y. Gwon, and S. Yoon, “ILVR: Conditioning method for denoising diffusion probabilistic models,” arXiv preprint arXiv:2108.02938, 2021.
  26. S. Xie, Z. Zhang, Z. Lin, T. Hinz, and K. Zhang, “Smartbrush: Text and shape guided object inpainting with diffusion model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 428–22 437.
  27. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
  28. O. Özdenizci and R. Legenstein, “Restoring vision in adverse weather conditions with patch-based denoising diffusion models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  29. B. Xia et al., “DiffIR: Efficient diffusion model for image restoration,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 13 095–13 105.
  30. J. Wu et al., “Medsegdiff: Medical image segmentation with diffusion probabilistic model,” in Medical Imaging with Deep Learning.   PMLR, 2024, pp. 1623–1639.
  31. J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin, “Diffusion models for implicit image segmentation ensembles,” in International Conference on Medical Imaging with Deep Learning.   PMLR, 2022, pp. 1336–1348.
  32. M. Özbey, O. Dalmaz, S. U. Dar, H. A. Bedel, Ş. Özturk, A. Güngör, and T. Çukur, “Unsupervised medical image translation with adversarial diffusion models,” IEEE Transactions on Medical Imaging, 2023.
  33. Y. Li et al., “Zero-shot medical image translation via frequency-guided diffusion models,” IEEE transactions on medical imaging, 2023.
  34. J. Liu et al., “Dolce: A model-based probabilistic diffusion framework for limited-angle ct reconstruction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 10 498–10 508.
  35. K. Xu, A. Krishnan, T. Z. Li, Y. Huo, K. L. Sandler, F. Maldonado, and B. A. Landman, “Zero-shot CT field-of-view completion with unconditional generative diffusion prior,” in Medical Imaging with Deep Learning, short paper track, 2023.
  36. C. Peng, P. Guo, S. K. Zhou, V. M. Patel, and R. Chellappa, “Towards performant and reliable undersampled mr reconstruction via diffusion model sampling,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2022, pp. 623–633.
  37. A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017.
  38. A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  39. M. Golbabaee et al., “Compressive mri quantification using convex spatiotemporal priors and deep encoder-decoder networks,” Medical image analysis, vol. 69, p. 101945, 2021.
  40. M. Weigel, “Extended phase graphs: dephasing, rf pulses, and echoes-pure and simple,” Journal of Magnetic Resonance Imaging, vol. 41, no. 2, pp. 266–295, 2015.
  41. K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6360–6376, 2021.
  42. K. Fatania, K. Y. Chau, C. M. Pirkl, M. I. Menzel, and M. Golbabaee, “Nonlinear equivariant imaging: Learning multi-parametric tissue mapping without ground truth for compressive quantitative mri,” in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2023, pp. 1–4.
  43. M. Huang, T. Nguyen-Duc, M. Soellradl, D. F. Schmidt, and R. Bammer, “Padmr: Patch-based denoising diffusion probabilistic model for magnetic resonance imaging reconstruction,” in 2024 IEEE International Symposium on Biomedical Imaging (ISBI).   IEEE, 2024, pp. 1–5.
  44. G. Luo, M. Blumenthal, M. Heide, and M. Uecker, “Bayesian mri reconstruction with joint uncertainty estimation using diffusion models,” Magnetic Resonance in Medicine, vol. 90, no. 1, pp. 295–311, 2023.
  45. C. Liao et al., “3d mr fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and grappa reconstruction,” Neuroimage, vol. 162, pp. 13–22, 2017.
  46. C. Zhang et al., “Large-scale 3d non-cartesian coronary mri reconstruction using distributed memory-efficient physics-guided deep learning with limited training data,” Magnetic Resonance Materials in Physics, Biology and Medicine, pp. 1–10, 2024.
  47. A. Güngör et al., “Adaptive diffusion priors for accelerated mri reconstruction,” Medical image analysis, vol. 88, p. 102872, 2023.
  48. Z.-X. Cui et al., “Spirit-diffusion: Self-consistency driven diffusion model for accelerated mri,” IEEE Transactions on Medical Imaging, 2024.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com