Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Strict inequalities for arm exponents in planar percolation (2410.23250v1)

Published 30 Oct 2024 in math.PR and math.CO

Abstract: We discuss a general method to prove quantitative improvements on correlation inequalities and apply it to arm estimates for Bernoulli bond percolation on the square lattice. Our first result is that the two-arm exponent is strictly larger than twice the one-arm exponent and can be seen as a quantitative improvement on the Harris-FKG inequality. This answers a question of Garban and Steif, which was motivated by the study of exceptional times in dynamical percolation. Our second result is that the monochromatic arm exponents are strictly larger than their polychromatic versions, and can be seen as a quantitative improvement on Reimer's main lemma. This second result is not new and was already proved by Beffara and Nolin using a different argument.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. The van den Berg-Kesten-Reimer inequality: a review. In Perplexing problems in probability, volume 44 of Progr. Probab., pages 159–173. Birkhäuser Boston, Boston, MA, 1999.
  2. Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2014.
  3. V. Beffara and P. Nolin. On monochromatic arm exponents for 2D critical percolation. Ann. Probab., 39(4):1286–1304, 2011.
  4. B. Bollobás and O. Riordan. Percolation. Cambridge University Press, New York, 2006.
  5. D. Cordero-Erausquin and M. Ledoux. Hypercontractive measures, Talagrand’s inequality, and influences. In Geometric aspects of functional analysis, volume 2050 of Lecture Notes in Math., pages 169–189. Springer, Heidelberg, 2012.
  6. Near critical scaling relations for planar Bernoulli percolation without differential inequalities. arXiv preprint arXiv:2111.14414, 2021.
  7. L. Gassmann and Manolescu I. Comparison of arm exponents in planar fk-percolation. preprint, 2024.
  8. The Fourier spectrum of critical percolation. Acta Math., 205(1):19–104, 2010.
  9. G.R. Grimmett. Percolation. In Development of mathematics 1950–2000, pages 547–575. Birkhäuser, Basel, 2000.
  10. C. Garban and J.E. Steif. Noise sensitivity of Boolean functions and percolation, volume 5 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, New York, 2015.
  11. Local time on the exceptional set of dynamical percolation and the incipient infinite cluster. Ann. Probab., 43(6):2949–3005, 2015.
  12. N. Keller. Lower bound on the correlation between monotone families in the average case. Adv. in Appl. Math., 43(1):31–45, 2009.
  13. H. Kesten. Scaling relations for 2222d-percolation. Comm. Math. Phys., 109(1):109–156, 1987.
  14. On the correlation of increasing families. J. Combin. Theory Ser. A, 144:250–276, 2016.
  15. Geometric influences II: correlation inequalities and noise sensitivity. Ann. Inst. Henri Poincaré Probab. Stat., 50(4):1121–1139, 2014.
  16. The dual BKR inequality and Rudich’s conjecture. Combin. Probab. Comput., 20(2):257–266, 2011.
  17. T.M. Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag, Berlin, 2005. Reprint of the 1985 original.
  18. One-arm exponent for critical 2D percolation. Electron. J. Probab., 7:no. 2, 13, 2002.
  19. I. Manolescu. Universality for planar percolation. PhD thesis, University of Cambridge, 2012.
  20. P. Nolin. Near-critical percolation in two dimensions. Electron. J. Probab., 13:no. 55, 1562–1623, 2008.
  21. Dynamical sensitivity of the infinite cluster in critical percolation. Ann. Inst. Henri Poincaré Probab. Stat., 45(2):491–514, 2009.
  22. D. Reimer. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput., 9(1):27–32, 2000.
  23. L. Russo. A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43(1):39–48, 1978.
  24. O. Schramm and J.E. Steif. Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. (2), 171(2):619–672, 2010.
  25. Percolation probabilities on the square lattice. Ann. Discrete Math., 3:227–245, 1978.
  26. S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8(5-6):729–744, 2001.
  27. M. Talagrand. Some remarks on the Berg-Kesten inequality. In Probability in Banach spaces, 9 (Sandjberg, 1993), volume 35 of Progr. Probab., pages 293–297. Birkhäuser Boston, Boston, MA, 1994.
  28. M. Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243–258, 1996.
  29. V. Tassion and H. Vanneuville. Noise sensitivity of percolation via differential inequalities. Proc. Lond. Math. Soc. (3), 126(4):1063–1091, 2023.
  30. J. van den Berg. Disjoint occurrences of events: results and conjectures. In Particle systems, random media and large deviations (Brunswick, Maine, 1984), volume 41 of Contemp. Math., pages 357–361. Amer. Math. Soc., Providence, RI, 1985.
  31. J. van den Berg and H. Kesten. Inequalities with applications to percolation and reliability. J. Appl. Probab., 22(3):556–569, 1985.
  32. Wendelin Werner. Lectures on two-dimensional critical percolation. In Statistical mechanics, volume 16 of IAS/Park City Math. Ser., pages 297–360. Amer. Math. Soc., Providence, RI, 2009.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.