Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized many-body perturbation theory for the electron correlation energy: multi-reference random phase approximation via diagrammatic resummation (2410.22990v2)

Published 30 Oct 2024 in quant-ph, cond-mat.str-el, and physics.chem-ph

Abstract: Many-body perturbation theory (MBPT) based on Green's functions and Feynman diagrams provides a fundamental theoretical framework for various \emph{ab initio} computational approaches in molecular and materials science, including the random phase approximation (RPA) and $GW$ approximation. Unfortunately, this perturbation expansion often fails in systems with strong multi-reference characters. Extending diagrammatic MBPT to the multi-reference case is highly nontrivial and remains largely unexplored, primarily due to the breakdown of Wick's theorem. In this work, we develop a diagrammatic multi-reference generalization of MBPT for computing correlation energies of strongly correlated systems, by using the cumulant expansion of many-body Green's function in place of Wick's theorem. This theoretical framework bridges the gap between MBPT in condensed matter physics and multi-reference perturbation theories (MRPT) in quantum chemistry, which had been almost exclusively formulated within time-independent wavefunction frameworks prior to this work. Our formulation enables the explicit incorporation of strong correlation effects from the outset as in MRPT, while treating residual weak interactions through a generalized diagrammatic perturbation expansion as in MBPT. As a concrete demonstration, we formulate a multi-reference (MR) extension of the standard single-reference (SR) RPA by systematically resumming generalized ring diagrams, which naturally leads to a unified set of equations applicable to both SR and MR cases. Benchmark calculations on prototypical molecular systems reveal that MR-RPA successfully resolves the well-known failure of SR-RPA in strongly correlated systems. This theoretical advancement paves the way for advancing \emph{ab initio} computational methods through diagrammatic resummation techniques in future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015).
  2. A. Fetter and J. Walecka, Quantum Theory of Many-Particle System, International Series in Pure and Applied Physics (MacGraw-Hill, New York, 1971).
  3. J. W. Negele and H. Orland, Quantum Many-particle Systems (CRC Press, Boca Raton, 1998).
  4. D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
  5. D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
  6. M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).
  7. A. Hesselmann and A. Görling, Mol. Phys. 109, 2473 (2011).
  8. D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
  9. F. Furche, J. Chem. Phys. 129, 114105 (2008).
  10. A. Heßelmann and A. Görling, Phys. Rev. Lett. 106, 093001 (2011).
  11. J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013).
  12. M. N. Tahir and X. Ren, Phys. Rev. B 99, 195149 (2019).
  13. D. L. Yeager and P. Jørgensen, Chem. Phys. Lett. 65, 77 (1979).
  14. B. Helmich-Paris, J. Chem. Phys. 150, 174121 (2019).
  15. K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).
  16. K. Pernal, J. Chem. Theory Comput. 10, 4332 (2014).
  17. K. Pernal, Phys. Rev. Lett. 120, 013001 (2018a).
  18. K. Pernal, J. Chem. Phys. 149, 204101 (2018b).
  19. E. Pastorczak and K. Pernal, J. Chem. Theory Comput. 14, 3493 (2018).
  20. Y. Guo and K. Pernal, Faraday Discuss.  (2024), 10.1039/D4FD00054D.
  21. Á. Szabados and Á. Margócsy, Mol. Phys. 115, 2731 (2017).
  22. Á. Margócsy and Á. Szabados, J. Chem. Phys. 152, 204114 (2020).
  23. G. Stefanucci and R. Van Leeuwen, Nonequilibrium many-body theory of quantum systems: a modern introduction (Cambridge University Press, 2013).
  24. G.-C. Wick, Phys. Rev. 80, 268 (1950).
  25. See Supplemental Material at URL-will-be-inserted-by-publisher for details of derivations for MR-RPA, implementations and numerical results.
  26. W. Metzner, Phys. Rev. B 43, 8549 (1991).
  27. J. Goldstone, Proc. R. Soc. A 239, 267 (1957).
  28. A. Heßelmann, Phys. Rev. A 85, 012517 (2012).
  29. I. Tamm, J. Phys. (USSR) 9, 449 (1945).
  30. S. M. Dancoff, Phys. Rev. 78, 382 (1950).
  31. T. M. Henderson and G. E. Scuseria, Mol. Phys. 108, 2511 (2010).
  32. K. G. Dyall, J. Chem. Phys. 102, 4909 (1995).
  33. E. Rosta and P. R. Surján, J. Chem. Phys. 116, 878 (2002).
  34. R. F. Fink, Chem. Phys. 356, 39 (2009).
  35. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
  36. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  37. G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465 (2011).
  38. I. Shavitt and R. J. Bartlett, Many-body methods in chemistry and physics: MBPT and coupled-cluster theory (Cambridge university press, 2009).
  39. Z. Li, J. Chem. Phys. 151, 244114 (2019).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.