Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fine-Tuning LLMs for Code Mutation: A New Era of Cyber Threats (2410.22293v1)

Published 29 Oct 2024 in cs.CR and cs.SE

Abstract: Recent advancements in LLMs have significantly improved their capabilities in natural language processing and code synthesis, enabling more complex applications across different fields. This paper explores the application of LLMs in the context of code mutation, a process where the structure of program code is altered without changing its functionality. Traditionally, code mutation has been employed to increase software robustness in mission-critical applications. Additionally, mutation engines have been exploited by malware developers to evade the signature-based detection methods employed by malware detection systems. Existing code mutation engines, often used by such threat actors, typically result in only limited variations in the malware, which can still be identified through static code analysis. However, the agility demonstrated by an LLM-based code synthesizer could significantly change this threat landscape by allowing for more complex code mutations that are not easily detected using static analysis. One can increase variations of codes synthesized by a pre-trained LLM through fine-tuning and retraining. This process is what we refer to as code mutation training. In this paper, we propose a novel definition of code mutation training tailored for pre-trained LLM-based code synthesizers and demonstrate this training on a lightweight pre-trained model. Our approach involves restructuring (i.e., mutating) code at the subroutine level, which allows for more manageable mutations while maintaining the semantic integrity verified through unit testing. Our experimental results illustrate the effectiveness of our approach in improving code mutation capabilities of LLM-based program synthesizers in producing varied and functionally correct code solutions, showcasing their potential to transform the landscape of code mutation and the threats associated with it.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.