Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical Calculation of the Hopf Index for 3D Magnetic Textures (2410.22058v1)

Published 29 Oct 2024 in cond-mat.mes-hall

Abstract: To gain deeper insight into the complex, stable, and robust configurations of magnetic textures, topological characterisation has proven essential. In particular, while the skyrmion number is a well-established topological invariant for 2D magnetic textures, the Hopf index serves as a key topological descriptor for 3D magnetic structures. In this work, we present and compare various methods for numerically calculating the Hopf index, provide implementations, and offer a detailed analysis of their accuracy and computational efficiency. Additionally, we identify and address common pitfalls and challenges associated with the numerical computation of the Hopf index, offering insights for improving the robustness of these techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. L. Faddeev and A. J. Niemi, Stable knot-like structures in classical field theory, Nature 387, 58 (1997).
  2. D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, How superfluid vortex knots untie, Nat. Phys. 12, 650 (2016).
  3. P. Sutcliffe, Skyrmion knots in frustrated magnets, Phys. Rev. Lett. 118, 247203 (2017).
  4. J. Whitehead, An expression of Hopf’s invariant as an integral, PNAS 33, 117 (1947).
  5. Please note that H𝐻Hitalic_H is also often called “helicity”, but we refrain from introducing this word here to not confuse it with skyrmion helicity which describes the skyrmion in-plane angle.
  6. This is a stricter condition than that the far field of 𝑭𝑭\bm{F}bold_italic_F converges to zero “quickly enough”.
  7. D. MacTaggart and A. Valli, Magnetic helicity in multiply connected domains, Journal of Plasma Physics 85, 775850501 (2019).
  8. D. Auckly and L. Kapitanski, Analysis of S2superscript𝑆2S^{2}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-valued maps and Faddeev’s Model, Commun. Math. Phys. 256, 611 (2005).
  9. J. Jäykkä and J. Hietarinta, Unwinding in hopfion vortex bunches, Phys. Rev. D 79, 125027 (2009).
  10. M. Kobayashi and M. Nitta, Winding hopfions on ℝ2×S1superscriptℝ2superscript𝑆1\mathbb{R}^{2}\times S^{1}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, Nucl. Phys. B 876, 605 (2013).
  11. Y. Liu, R. K. Lake, and J. Zang, Binding a hopfion in a chiral magnet nanodisk, Phys. Rev. B 98, 174437 (2018).
  12. Please note that the convention in the literature is to call a numerical approximation of a derivative taking just the two nearest neighbours of a point into account a two-point stencil while including also the second nearest neighbours is called a five-point stencil.
  13. B. Berg and M. Lüscher, Definition and statistical distributions of a topological number in the lattice O⁢(3)O3\mathrm{O}(3)roman_O ( 3 ) σ𝜎\sigmaitalic_σ-model, Nucl. Phys. B 190, 412 (1981).
  14. J.-V. Kim and J. Mulkers, On quantifying the topological charge in micromagnetics using a lattice-based approach, IOP SciNotes 1, 025211 (2020).
  15. Such a gauge also allows the computation of the Hopf index of magnetic structures which are periodic along x𝑥xitalic_x- or z𝑧zitalic_z-directions (but not along y𝑦yitalic_y).
  16. R. Hertel, S. Christophersen, and S. Börm, Large-scale magnetostatic field calculation in finite element micromagnetics with ℋ2superscriptℋ2\mathcal{H}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-matrices, J. Magn. Magn. Mater. 477, 118 (2019).
  17. R. Hertel and A. Kákay, Hybrid finite-element/boundary-element method to calculate Oersted fields, J. Magn. Magn. Mater. 369, 189 (2014).
  18. R. Hertel, tetmag, https://github.com/R-Hertel/tetmag (2023).
  19. K. Y. Guslienko, Emergent magnetic field and vector potential of the toroidal magnetic hopfions, Chaos Soliton Fract. 174, 113840 (2023).
  20. N. Papanicolaou, Dynamics of Magnetic Vortex Rings, in Singularities in Fluids, Plasmas and Optics, NATO ASI Series, edited by R. E. Caflisch and G. C. Papanicolaou (Springer Netherlands, Dordrecht, 1993) pp. 151–158.
  21. N. R. Cooper, Propagating magnetic vortex rings in ferromagnets, Phys. Rev. Lett. 82, 1554 (1999).
  22. P. Sutcliffe, Vortex rings in ferromagnets: Numerical simulations of the time-dependent three-dimensional Landau-Lifshitz equation, Phys. Rev. B 76, 184439 (2007).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.