Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

NLO EW corrections to tau pair production via photon fusion in Pb-Pb ultraperipheral collision (2410.21963v2)

Published 29 Oct 2024 in hep-ph

Abstract: We study the next-to-leading order (NLO) electroweak (EW) corrections to the $\gamma \gamma \to \tau+ \tau-$ process in Pb-Pb ultraperipheral collision (UPC). We find that the EW correction $\delta \sigma_{\mathrm{EW}}$ decreases the total cross section $\sigma_{\mathrm{NLO}} = \sigma_{\mathrm{LO}} + \delta \sigma_{\mathrm{EW}}$ by -3\% at Pb-Pb center-of-mass energy $\sqrt{s_{NN}}=5.02$ TeV. The weak correction plays significant role whose contribution is about -4 times of that of QED. The CMS and ATLAS collaborations use the reaction $\gamma\gamma \to \tau+ \tau-$ in Pb-Pb and proton-proton UPC to constrain tau's anomalous magnetic moment $a_\tau$. By parameterizing the $\gamma \tau \tau$ vertex with two form factors $F_{1,2}$, the cross section can be written as $\sigma_{a_\tau} = \sigma_{\mathrm{LO}} + \delta \sigma_{a_\tau}$, where $\delta \sigma_{a_\tau}$ is proportional to $a_\tau$. The impact of NLO EW corrections on $a_\tau$ bounds in Pb-Pb UPC is limited, as the current experimental bounds are loose. We also find that various differential distributions of the two ratios $\mathrm{d} \sigma_{\mathrm{NLO}}/ \mathrm{d} \sigma_{\mathrm{LO}}$ and $\mathrm{d} \sigma_{a_\tau}/ \mathrm{d} \sigma_{\mathrm{LO}}$ have different lineshapes. This work is significant to precisely study the interaction of $\gamma \tau \tau$ via $\gamma \gamma \to \tau+ \tau-$ process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. D. P. Aguillard et al. (Muon g-2), Phys. Rev. Lett. 131, 161802 (2023), arXiv:2308.06230 [hep-ex] .
  2. T. Aoyama et al., Phys. Rept. 887, 1 (2020), arXiv:2006.04822 [hep-ph] .
  3. A. Hayrapetyan et al. (CMS), Rept. Prog. Phys. 87, 107801 (2024), arXiv:2406.03975 [hep-ex] .
  4. S. Eidelman and M. Passera, Mod. Phys. Lett. A 22, 159 (2007), arXiv:hep-ph/0701260 .
  5. G. W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), arXiv:hep-ex/0602035 .
  6. S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001).
  7. C. F. von Weizsacker, Z. Phys. 88, 612 (1934).
  8. E. J. Williams, Phys. Rev. 45, 729 (1934).
  9. H.-S. Shao and D. d’Enterria, JHEP 09, 248 (2022), arXiv:2207.03012 [hep-ph] .
  10. S. Afanasiev et al. (PHENIX), Phys. Lett. B 679, 321 (2009), arXiv:0903.2041 [nucl-ex] .
  11. E. Abbas et al. (ALICE), Eur. Phys. J. C 73, 2617 (2013), arXiv:1305.1467 [nucl-ex] .
  12. J. Adam et al. (STAR), Phys. Rev. Lett. 127, 052302 (2021), arXiv:1910.12400 [nucl-ex] .
  13. G. Aad et al. (ATLAS), Phys. Rev. C 104, 024906 (2021), arXiv:2011.12211 [nucl-ex] .
  14. A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 127, 122001 (2021), arXiv:2011.05239 [hep-ex] .
  15. G. Aad et al. (ATLAS), Phys. Rev. Lett. 131, 151802 (2023), arXiv:2204.13478 [hep-ex] .
  16. A. Tumasyan et al. (CMS), Phys. Rev. Lett. 131, 151803 (2023), arXiv:2206.05192 [nucl-ex] .
  17. L. Beresford and J. Liu, Phys. Rev. D 102, 113008 (2020), [Erratum: Phys.Rev.D 106, 039902 (2022)], arXiv:1908.05180 [hep-ph] .
  18. H.-S. Shao and D. d’Enterria,   (2024), arXiv:2407.13610 [hep-ph] .
  19. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  20. L. Chen, JHEP 2023, 30 (2023), arXiv:2304.13814 [hep-ph] .
  21. L. Chen,   (2024), arXiv:2409.08099 [hep-ph] .
  22. D. Kreimer, “The role of γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT in dimensional regularization,”  (1994), arXiv:hep-ph/9401354 [hep-ph] .
  23. A. Denner, Fortsch. Phys. 41, 307 (1993), arXiv:0709.1075 [hep-ph] .
  24. B. W. Harris and J. F. Owens, Phys. Rev. D 65, 094032 (2002), arXiv:hep-ph/0102128 .
  25. T. Hahn, Comput. Phys. Commun. 140, 418 (2001), arXiv:hep-ph/0012260 .
  26. V. Shtabovenko, R. Mertig,  and F. Orellana, “Feyncalc 10: Do multiloop integrals dream of computer codes?”  (2023), arXiv:2312.14089 [hep-ph] .
  27. R. Bruce et al., Journal of Physics G: Nuclear and Particle Physics 47, 060501 (2020).
  28. D. d’Enterria et al., Journal of Physics G: Nuclear and Particle Physics 50, 050501 (2023).
  29. J. Abdallah et al. (DELPHI), Eur. Phys. J. C 35, 159 (2004), arXiv:hep-ex/0406010 .
  30. K. Ackerstaff et al. (OPAL), Phys. Lett. B 431, 188 (1998), arXiv:hep-ex/9803020 .
  31. M. Acciarri et al. (L3), Phys. Lett. B 434, 169 (1998).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com