Sample-Optimal Quantum Estimators for Pure-State Trace Distance and Fidelity via Samplizer (2410.21201v1)
Abstract: Trace distance and infidelity (induced by square root fidelity), as basic measures of the closeness of quantum states, are commonly used in quantum state discrimination, certification, and tomography. However, the sample complexity for their estimation still remains open. In this paper, we solve this problem for pure states. We present a quantum algorithm that estimates the trace distance and square root fidelity between pure states to within additive error $\varepsilon$, given sample access to their identical copies. Our algorithm achieves the optimal sample complexity $\Theta(1/\varepsilon2)$, improving the long-standing folklore $O(1/\varepsilon4)$. Our algorithm is composed of a samplized phase estimation of the product of two Householder reflections. Notably, an improved (multi-)samplizer for pure states is used as an algorithmic tool in our construction, through which any quantum query algorithm using $Q$ queries to the reflection operator about a pure state $|\psi\rangle$ can be converted to a $\delta$-close (in the diamond norm) quantum sample algorithm using $\Theta(Q2/\delta)$ samples of $|\psi\rangle$. This samplizer for pure states is shown to be optimal.
- Distributed quantum inner product estimation. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 44–51, 2022. doi:10.1145/3519935.3519974.
- Distributed inner product estimation with limited quantum communication. ArXiv e-prints, 2024. arXiv:2410.12684.
- Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.502097.
- Stabilization of quantum computations by symmetrization. SIAM Journal on Computing, 26(5):1541–1557, 1997. doi:10.1137/S0097539796302452.
- Quantum state discrimination. Advances in Optics and Photonics, 1(2):238–278, 2009. doi:10.1364/AOP.1.000238.
- Quantum fingerprinting. Physical Review Letters, 87(16):167902, 2001. doi:10.1103/PhysRevLett.87.167902.
- Quantum amplitude amplification and estimation. In Samuel J. Lomonaco, Jr. and Howard E. Brandt, editors, Quantum Computation and Information, volume 305 of Contemporary Mathematics, pages 53–74. AMS, 2002. doi:10.1090/conm/305/05215.
- Quantum state discrimination and its applications. Journal of Physics A: Mathematical and Theoretical, 48(8):083001, 2015. doi:10.1088/1751-8113/48/8/083001.
- Quantum state certification. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 503–514, 2019. doi:10.1145/3313276.3316344.
- Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3(4):040303, 2022. doi:10.1103/PRXQuantum.3.040303.
- Anthony Chefles. Quantum state discrimination. Contemporary Physics, 41(6):401–424, 2000. doi:10.1080/00107510010002599.
- Local test for unitarily invariant properties of bipartite quantum states. ArXiv e-prints, 2024. arXiv:2404.04599.
- Direct fidelity estimation from few Pauli measurements. Physical Review Letters, 106(23):230501, 2011. doi:10.1103/PhysRevLett.106.230501.
- On the sample complexity of purity and inner product estimation. ArXiv e-prints, 2024. arXiv:2410.12712.
- Quantum state tomography via compressed sensing. Physical Review Letters, 105(15):150401, 2010. doi:10.1103/PhysRevLett.105.150401.
- Toolbox for entanglement detection and fidelity estimation. Physical Review A, 76(3):030305(R), 2007. doi:10.1103/PhysRevA.76.030305.
- Improved quantum algorithms for fidelity estimation. ArXiv e-prints, 2022. arXiv:2203.15993.
- Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204, 2019. doi:10.1145/3313276.3316366.
- Entanglement detection. Physics Reports, 474(1–6):1–75, 2009. doi:10.1016/j.physrep.2009.02.004.
- Carl W. Helstrom. Detection theory and quantum mechanics. Information and Control, 10(3):254–291, 1967. doi:10.1016/S0019-9958(67)90302-6.
- Sample-optimal tomography of quantum states. IEEE Transactions on Information Theory, 63(9):5628–5641, 2017. doi:10.1109/TIT.2017.2719044.
- Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10):1050–1057, 2020. doi:10.1038/s41567-020-0932-7.
- Alexander S. Holevo. Statistical decision theory for quantum systems. Journal of Multivariate Analysis, 3(4):337–394, 1973. doi:10.1016/0047-259X(73)90028-6.
- A. Yu. Kitaev. Quantum measurements and the Abelian stabilizer problem. ArXiv e-prints, 1995. arXiv:quant-ph/9511026.
- Hamiltonian simulation with optimal sample complexity. npj Quantum Information, 3(1):1–7, 2017. doi:10.1038/s41534-017-0013-7.
- Quantum Merlin-Arthur proof systems: are multiple Merlins more helpful to Arthur? Chicago Journal of Theoretical Computer Science, 2009:3, 2009. doi:10.4086/cjtcs.2009.003.
- Space-bounded quantum state testing via space-efficient quantum singular value transformation. ArXiv e-prints, 2023. arXiv:2308.05079.
- Quantum principal component analysis. Nature Physics, 10(9):631–633, 2014. doi:10.1038/nphys3029.
- Quantum algorithms for matrix geometric means. ArXiv e-prints, 2024. arXiv:2405.00673.
- Quantum Computation and Quantum Information. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.
- The quantum query complexity of approximating the median and related statistics. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 384–393, 1999. doi:10.1145/301250.301349.
- Efficient quantum tomography. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, pages 899–912, 2016. doi:10.1145/2897518.2897544.
- Quantum spectrum testing. Communications in Mathematical Physics, 387(1):1–75, 2021. doi:10.1007/s00220-021-04180-1.
- Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. doi:10.1137/S0097539795293172.
- Fidelity estimation and entanglement verification for experimentally produced four-qubit cluster states. Physical Review A, 74(2):020301(R), 2006. doi:10.1103/PhysRevA.74.020301.
- Estimating the unseen: improved estimators for entropy and other properties. Journal of the ACM, 64(6):37:1–37:41, 2017. doi:10.1145/3125643.
- Qisheng Wang. Optimal trace distance and fidelity estimations for pure quantum states. IEEE Transactions on Information Theory, 2024. doi:10.1109/TIT.2024.3447915.
- New quantum algorithms for computing quantum entropies and distances. IEEE Transactions on Information Theory, 70(8):5653–5680, 2024. doi:10.1109/TIT.2024.3399014.
- Fast quantum algorithms for trace distance estimation. IEEE Transactions on Information Theory, 70(4):2720–2733, 2024. doi:10.1109/TIT.2023.3321121.
- Time-efficient quantum entropy estimator via samplizer. In Proceedings of the 32nd Annual European Symposium on Algorithms, pages 101:1–101:15, 2024. doi:10.4230/LIPIcs.ESA.2024.101.
- Quantum algorithm for fidelity estimation. IEEE Transactions on Information Theory, 69(1):273–282, 2023. doi:10.1109/TIT.2022.3203985.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.