Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Observation of the magic angle and flat band physics in dipolar photonic lattices (2410.20914v1)

Published 28 Oct 2024 in physics.optics and cond-mat.mes-hall

Abstract: Evanescently coupled waveguide arrays provide a tabletop platform to realize a variety of Hamiltonians, where physical waveguides correspond to the individual sites of a tight-binding lattice. Nontrivial spatial structure of the waveguide modes enriches this picture and uncovers further possibilities. Here, we demonstrate that the effective coupling between $p$-like modes of adjacent photonic waveguides changes its sign depending on their relative orientation vanishing for a proper alignment at a so-called magic angle. Using femtosecond laser-written waveguides, we demonstrate this experimentally for $p$-mode dimers and graphene-like photonic lattices exhibiting quasi-flat bands at this angle. We observe diffraction-free propagation of corner and bulk states providing a robust experimental evidence of a two-dimensional Aharonov-Bohm-like caging in an optically switchable system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. Alexander Szameit and Stefan Nolte, “Discrete optics in femtosecond-laser-written photonic structures,” Journal of Physics B: Atomic, Molecular and Optical Physics 43, 163001 (2010).
  2. Mikael C. Rechtsman, Julia M. Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev,  and Alexander Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
  3. Alexander Szameit and Mikael C. Rechtsman, “Discrete nonlinear topological photonics,” Nature Physics 20, 905–912 (2024).
  4. H. Haus, W. Huang, S. Kawakami,  and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5, 16–23 (1987).
  5. Robert Keil, Charles Poli, Matthias Heinrich, Jake Arkinstall, Gregor Weihs, Henning Schomerus,  and Alexander Szameit, “Universal Sign Control of Coupling in Tight-Binding Lattices,” Physical Review Letters 116, 213901 (2016).
  6. Gabriel Cáceres-Aravena, Diego Guzmán-Silva, Ignacio Salinas,  and Rodrigo A. Vicencio, “Controlled Transport Based on Multiorbital Aharonov-Bohm Photonic Caging,” Phys. Rev. Lett. 128, 256602 (2022).
  7. Sebabrata Mukherjee, Marco Di Liberto, Patrik Öhberg, Robert R. Thomson,  and Nathan Goldman, “Experimental Observation of Aharonov-Bohm Cages in Photonic Lattices,” Physical Review Letters 121, 075502 (2018).
  8. T. Eichelkraut, S. Weimann, S. Stützer, S. Nolte,  and A. Szameit, “Radiation-loss management in modulated waveguides,” Optics Letters 39, 6831 (2014).
  9. S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman,  and A. Szameit, “Topologically protected bound states in photonic parity–time-symmetric crystals,” Nature Materials 16, 433–438 (2016).
  10. R.A. Vicencio, D. Román-Cortés, M. Rubio-Saldías, P. Vildoso,  and L.E.F. Foa Torres, “Non-Reciprocal Coupling in Photonics,”  (2024), arXiv:2407.18174 [physics.optics] .
  11. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
  12. Maxim Mazanov, Diego Román-Cortés, Gabriel Cáceres-Aravena, Christofer Cid, Maxim A. Gorlach,  and Rodrigo A. Vicencio, “Photonic Molecule Approach to Multiorbital Topology,” Nano Lett. 24, 4595–4601 (2024a).
  13. Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg,  and Iacopo Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
  14. Alexander B. Khanikaev, S. Hossein Mousavi, Wang-Kong Tse, Mehdi Kargarian, Allan H. MacDonald,  and Gennady Shvets, “Photonic topological insulators,” Nat. Mater. 12, 233–239 (2013).
  15. G. Cáceres-Aravena, L. E. F. Foa Torres,  and R. A. Vicencio, “Topological and flat-band states induced by hybridized linear interactions in one-dimensional photonic lattices,” Phys. Rev. A 102, 023505 (2020).
  16. Roman S. Savelev and Maxim A. Gorlach, “Topological states in arrays of optical waveguides engineered via mode interference,” Physical Review B 102, 161112 (2020).
  17. Julian Schulz, Jiho Noh, Wladimir A. Benalcazar, Gaurav Bahl,  and Georg von Freymann, “Photonic quadrupole topological insulator using orbital-induced synthetic flux,” Nature Communications 13, 1–6 (2022a).
  18. Maxim Mazanov, Anton S. Kupriianov, Roman S. Savelev, Zuxian He,  and Maxim A. Gorlach, “Multipole higher-order topology in a multimode lattice,” Physical Review B 109, l201122 (2024b).
  19. Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras,  and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43–50 (2018).
  20. Tero T. Heikkilä and Grigory E. Volovik, “Flat bands as a route to high-temperature superconductivity in graphite,” in Basic Physics of Functionalized Graphite, edited by Pablo D. Esquinazi (Springer International Publishing, Cham, 2016) pp. 123–143.
  21. Ville A. J. Pyykkönen, Sebastiano Peotta,  and Päivi Törmä, “Suppression of nonequilibrium quasiparticle transport in flat-band superconductors,” Phys. Rev. Lett. 130, 216003 (2023).
  22. Alberto Ciarrocchi, Fedele Tagarelli, Ahmet Avsar,  and Andras Kis, “Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics,” Nature Reviews Materials 7, 449–464 (2022).
  23. Guangwei Hu, Cheng-Wei Qiu,  and Andrea Alù, “Twistronics for photons: opinion,” Optical Materials Express 11, 1377 (2021).
  24. Xiaoxi Zhou, Zhi-Kang Lin, Weixin Lu, Yun Lai, Bo Hou,  and Jian-Hua Jiang, “Twisted Quadrupole Topological Photonic Crystals,” Laser Photonics Rev. 14, 2000010 (2020).
  25. Carlo Danieli, Alexei Andreanov, Daniel Leykam,  and Sergej Flach, “Flat band fine-tuning and its photonic applications,” Nanophotonics 13, 3925–3944 (2024).
  26. Carlo Danieli, Alexei Andreanov, Thudiyangal Mithun,  and Sergej Flach, “Nonlinear caging in all-bands-flat lattices,” Phys. Rev. B 104, 085131 (2021).
  27. Gabriel Cáceres-Aravena, Milica Nedić, Paloma Vildoso, Goran Gligorić, Jovana Petrovic, Aleksandra Maluckov,  and Rodrigo A. Vicencio, “Compact topological edge states in flux-dressed graphenelike photonic lattices,” Phys. Rev. Lett. 133, 116304 (2024).
  28. Sergej Flach, Daniel Leykam, Joshua D. Bodyfelt, Peter Matthies,  and Anton S. Desyatnikov, “Detangling flat bands into Fano lattices,” EPL (Europhysics Letters) 105, 30001 (2014).
  29. Wulayimu Maimaiti, Alexei Andreanov, Hee Chul Park, Oleg Gendelman,  and Sergej Flach, “Compact localized states and flat-band generators in one dimension,” Phys. Rev. B 95, 115135 (2017).
  30. Wulayimu Maimaiti, Sergej Flach,  and Alexei Andreanov, “Universal d=1𝑑1d=1italic_d = 1 flat band generator from compact localized states,” Phys. Rev. B 99, 125129 (2019).
  31. Wulayimu Maimaiti, Alexei Andreanov,  and Sergej Flach, “Flat-band generator in two dimensions,” Phys. Rev. B 103, 165116 (2021).
  32. Luis Morales-Inostroza and Rodrigo A. Vicencio, “Simple method to construct flat-band lattices,” Phys. Rev. A 94, 043831 (2016).
  33. Daniel Leykam, Alexei Andreanov,  and Sergej Flach, “Artificial flat band systems: from lattice models to experiments,” Advances in Physics: X 3, 1473052 (2018).
  34. Daniel Leykam and Sergej Flach, “Perspective: Photonic flatbands,” APL Photonics 3, 070901 (2018).
  35. Rodrigo A. Vicencio Poblete, “Photonic flat band dynamics,” Advances in Physics: X 6, 1878057 (2021).
  36. Weiwei Zhu, Hongyu Zou, Yong Ge, Yin Wang, Zheyu Cheng, Bing-bing Wang, Shou-qi Yuan, Hong-xiang Sun, Haoran Xue,  and Baile Zhang, “Flatbands from Bound States in the Continuum for Orbital Angular Momentum Localization,” arXiv: 2410.04040  (2024), 10.48550/ARXIV.2410.04040, arXiv:2410.04040 [physics.optics] .
  37. Christina Jörg, Gerard Queraltó, Mark Kremer, Gerard Pelegrí, Julian Schulz, Alexander Szameit, Georg von Freymann, Jordi Mompart,  and Verònica Ahufinger, “Artificial gauge field switching using orbital angular momentum modes in optical waveguides,” Light Sci. Appl. 9, 1–7 (2020).
  38. G. Pelegrí, A. M. Marques, R. G. Dias, A. J. Daley, J. Mompart,  and V. Ahufinger, “Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum,” Phys. Rev. A 99, 023613 (2019).
  39. Maxim Mazanov, Anton Kupriianov, Zuxian He, Roman Savelev,  and Maxim Gorlach, “Higher-Order Topology and Fully Flat Bands in Multimode Photonic Time-Reversal-Invariant Lattices,” in 2023 Light Conference (IEEE, 2023) pp. 11–16.
  40. Julien Vidal, Rémy Mosseri,  and Benoit Douçot, “Aharonov-Bohm cages in two-dimensional structures,” Phys. Rev. Lett. 81, 5888–5891 (1998).
  41. Stefano Longhi, “Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields,” Optics Letters 39, 5892–5895 (2014).
  42. Jing Yang, Yuanzhen Li, Yumeng Yang, Xinrong Xie, Zijian Zhang, Jiale Yuan, Han Cai, Da-Wei Wang,  and Fei Gao, “Realization of all-band-flat photonic lattices,” Nat. Commun. 15, 1–7 (2024).
  43. Nicholas J. Hestand and Frank C. Spano, “Expanded theory of h- and j-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer,” Chemical Reviews 118, 7069–7163 (2018), pMID: 29664617, https://doi.org/10.1021/acs.chemrev.7b00581 .
  44. Peter M. Kazmaier and Roald Hoffmann, “A Theoretical Study of Crystallochromy. Quantum Interference Effects in the Spectra of Perylene Pigments,” J. Am. Chem. Soc. 116, 9684–9691 (1994).
  45. Amnon Yariv and Pochi Yeh, Optical waves in crystals: propagation and control of laser radiation, wiley classics library ed ed., Wiley classics library (John Wiley and Sons, Hoboken, N.J, 2003).
  46. “See Supplemental Material at [url will be inserted by publisher] for the numerical calculation of couplings from the eigenmodes of a dimer; evaluation of non-orthogonality corrections for waveguide lattices; construction of Bloch Hamiltonian and Wannier center calculation; computation of the inverse participation ratio; description of the femtosecond laser writing technique; further details on experiments.” .
  47. Lukas J. Maczewsky, Steffen Weimann, Mark Kremer, Matthias Heinrich,  and Alexander Szameit, “Experimental study of non-orthogonal modes in tight-binding lattices,” in 2019 Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2019) pp. 05–10.
  48. J. Schulz, C. Jörg, C. Jörg, G. von Freymann,  and G. von Freymann, “Geometric control of next-nearest-neighbor coupling in evanescently coupled dielectric waveguides,” Opt. Express 30, 9869–9877 (2022b).
  49. D.J. Thouless, “Electrons in disordered systems and the theory of localization,” Physics Reports 13, 93–142 (1974).
  50. Daniel Leykam, Omri Bahat-Treidel,  and Anton S. Desyatnikov, “Pseudospin and nonlinear conical diffraction in Lieb lattices,” Phys. Rev. A 86, 031805 (2012).
  51. Rodrigo A. Vicencio, Camilo Cantillano, Luis Morales-Inostroza, Bastián Real, Cristian Mejía-Cortés, Steffen Weimann, Alexander Szameit,  and Mario I. Molina, “Observation of Localized States in Lieb Photonic Lattices,” Phys. Rev. Lett. 114, 245503 (2015).
  52. Sebabrata Mukherjee, Alexander Spracklen, Debaditya Choudhury, Nathan Goldman, Patrik Öhberg, Erika Andersson,  and Robert R. Thomson, “Observation of a Localized Flat-Band State in a Photonic Lieb Lattice,” Phys. Rev. Lett. 114, 245504 (2015).
  53. Sebabrata Mukherjee and Robert R. Thomson, “Observation of robust flat-band localization in driven photonic rhombic lattices,” Opt. Lett. 42, 2243–2246 (2017).
  54. W. P. Su, J. R. Schrieffer,  and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1698–1701 (1979).
  55. Wladimir A. Benalcazar, Tianhe Li,  and Taylor L. Hughes, “Quantization of fractional corner charge in Cnsubscript𝐶𝑛{C}_{n}italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-symmetric higher-order topological crystalline insulators,” Phys. Rev. B 99, 245151 (2019).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com