Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Mode sensitivity: Connecting Lagrangian coherent structures with modal analysis for fluid flows (2410.20802v4)

Published 28 Oct 2024 in physics.flu-dyn

Abstract: We consider the relationship between modal representations obtained from data-driven decomposition methods and Lagrangian Coherent Structures (LCSs). Mode sensitivity is used to describe this analysis as an extension of the model sensitivity framework developed by Kasz\'as and Haller (2020). The method, based on the computation of the finite-time-Lyapunov exponent, uses modes from fluid data to compute the amplitude perturbations experienced by fluid particle trajectories along with their sensitivity to initial conditions. Demonstrations of the method are presented with both periodic and turbulent flows, including a kinematic flow model, experimental data from the wake past an oscillating foil, numerical data of the classical cylinder wake flow, and a direct numerical simulation (DNS) of a turbulent channel flow. Mode sensitivity fields reveal both quantitatively and qualitatively how the finite-time Lyapunov exponent fields used to visualize LCSs change due to the influence of modes or external perturbations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annual Review of Fluid Mechanics, 25(1):539–575, Jan. 1993. ISSN 0066-4189, 1545-4479. doi: 10.1146/annurev.fl.25.010193.002543. URL https://www.annualreviews.org/doi/10.1146/annurev.fl.25.010193.002543.
  2. F. Brauer. Perturbations of nonlinear systems of differential equations. Journal of Mathematical Analysis and Applications, 14(2):198–206, May 1966. ISSN 0022-247X. doi: 10.1016/0022-247X(66)90021-7. URL https://www.sciencedirect.com/science/article/pii/0022247X66900217.
  3. Closed-Loop Turbulence Control: Progress and Challenges. Applied Mechanics Reviews, 67(5):050801, Sept. 2015. ISSN 0003-6900, 2379-0407. doi: 10.1115/1.4031175. URL https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/doi/10.1115/1.4031175/369906/ClosedLoop-Turbulence-Control-Progress-and.
  4. Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(1):017503, Mar. 2010. ISSN 1054-1500. doi: 10.1063/1.3270044. URL https://aip.scitation.org/doi/abs/10.1063/1.3270044. Publisher: American Institute of Physics.
  5. Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses. Journal of Nonlinear Science, 22(6):887–915, Dec. 2012. ISSN 0938-8974, 1432-1467. doi: 10.1007/s00332-012-9130-9. URL http://link.springer.com/10.1007/s00332-012-9130-9.
  6. D. Chung and B. J. McKeon. Large-eddy simulation of large-scale structures in long channel flow. Journal of Fluid Mechanics, 661:341–364, Oct. 2010. ISSN 0022-1120, 1469-7645. doi: 10.1017/S0022112010002995. URL https://www.cambridge.org/core/product/identifier/S0022112010002995/type/journal_article.
  7. A Web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. Journal of Turbulence, 17(2):181–215, Feb. 2016. ISSN 1468-5248. doi: 10.1080/14685248.2015.1088656. URL http://www.tandfonline.com/doi/full/10.1080/14685248.2015.1088656.
  8. Detection of Lagrangian coherent structures in three-dimensional turbulence. Journal of Fluid Mechanics, 572:111–120, Feb. 2007. ISSN 0022-1120, 1469-7645. doi: 10.1017/S0022112006003648. URL https://www.cambridge.org/core/product/identifier/S0022112006003648/type/journal_article.
  9. The unsteady three-dimensional wake produced by a trapezoidal pitching panel. Journal of Fluid Mechanics, 685:117–145, Oct. 2011. ISSN 1469-7645, 0022-1120. doi: 10.1017/jfm.2011.286. URL https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/unsteady-threedimensional-wake-produced-by-a-trapezoidal-pitching-panel/527CA5A9CFC7DE5A6171493354738D7D. Publisher: Cambridge University Press.
  10. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer, New York, NY, 1983. ISBN 978-1-4612-7020-1 978-1-4612-1140-2. doi: 10.1007/978-1-4612-1140-2. URL http://link.springer.com/10.1007/978-1-4612-1140-2.
  11. D. Gérard-Varet and E. Dormy. Ekman layers near wavy boundaries. Journal of Fluid Mechanics, 565:115, Oct. 2006. ISSN 0022-1120, 1469-7645. doi: 10.1017/S0022112006001856. URL http://www.journals.cambridge.org/abstract_S0022112006001856.
  12. G. Haller. Lagrangian Coherent Structures. Annual Review of Fluid Mechanics, 47(1):137–162, 2015. doi: 10.1146/annurev-fluid-010313-141322. URL https://doi.org/10.1146/annurev-fluid-010313-141322. _eprint: https://doi.org/10.1146/annurev-fluid-010313-141322.
  13. Data-driven resolvent analysis. Journal of Fluid Mechanics, 918:A10, July 2021. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2021.337. URL https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/datadriven-resolvent-analysis/0FA58F03E774C7402EA188D3B8F34B0F.
  14. Dependence of small-scale energetics on large scales in turbulent flows. Journal of Fluid Mechanics, 852:641–662, Oct. 2018. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2018.554. URL https://www.cambridge.org/core/product/identifier/S0022112018005542/type/journal_article.
  15. N. Hutchins and I. Marusic. Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1852):647–664, Mar. 2007. ISSN 1364-503X, 1471-2962. doi: 10.1098/rsta.2006.1942. URL https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1942.
  16. Connections between propulsive efficiency and wake structure via modal decomposition. Journal of Fluid Mechanics, 988:A35, 2024. doi: 10.1017/jfm.2024.446.
  17. B. Kaszás and G. Haller. Universal upper estimate for prediction errors under moderate model uncertainty. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(11):113144, Nov. 2020. ISSN 1054-1500, 1089-7682. doi: 10.1063/5.0021665. URL https://pubs.aip.org/cha/article/30/11/113144/1077428/Universal-upper-estimate-for-prediction-errors.
  18. U. Kirchaber. Error bounds for perturbation methods. Celestial mechanics, 14(3):351–362, Nov. 1976. ISSN 1572-9478. doi: 10.1007/BF01228521. URL https://doi.org/10.1007/BF01228521.
  19. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA, Nov. 2016. ISBN 978-1-61197-449-2 978-1-61197-450-8. doi: 10.1137/1.9781611974508. URL http://epubs.siam.org/doi/book/10.1137/1.9781611974508.
  20. Vortex-wake interactions of a flapping foil that models animal swimming and flight. Journal of Experimental Biology, 211(2):267–273, Jan. 2008. ISSN 0022-0949. doi: 10.1242/jeb.006155. URL https://doi.org/10.1242/jeb.006155.
  21. T. MacMillan and N. Ouellette. Lagrangian scale decomposition via the graph Fourier transform. Physical Review Fluids, 7, Dec. 2022. doi: 10.1103/PhysRevFluids.7.124401.
  22. Predictive Model for Wall-Bounded Turbulent Flow. Science, 329(5988):193–196, July 2010. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1188765. URL https://www.science.org/doi/10.1126/science.1188765.
  23. Maximizing the efficiency of a flexible propulsor using experimental optimization. Journal of Fluid Mechanics, 767:430–448, 2015. doi: 10.1017/jfm.2015.35.
  24. M. E. Ralph. Oscillatory flows in wavy-walled tubes. Journal of Fluid Mechanics, 168(-1):515, July 1986. ISSN 0022-1120, 1469-7645. doi: 10.1017/S0022112086000496. URL http://www.journals.cambridge.org/abstract_S0022112086000496.
  25. Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data. Experiments in Fluids, 60(4):74, Apr. 2019. ISSN 0723-4864, 1432-1114. doi: 10.1007/s00348-018-2658-1. URL http://link.springer.com/10.1007/s00348-018-2658-1.
  26. An analytical study of transport, mixing and chaos in an unsteady vortical flow. Journal of Fluid Mechanics, 214(-1):347, May 1990. ISSN 0022-1120, 1469-7645. doi: 10.1017/S0022112090000167. URL http://www.journals.cambridge.org/abstract_S0022112090000167.
  27. Model Reduction for Flow Analysis and Control. Annual Review of Fluid Mechanics, 49(1):387–417, 2017. doi: 10.1146/annurev-fluid-010816-060042. URL https://doi.org/10.1146/annurev-fluid-010816-060042. _eprint: https://doi.org/10.1146/annurev-fluid-010816-060042.
  28. Amplitude and wall-normal distance variation of small scales in turbulent boundary layers. Physical Review Fluids, 7(1):014606, Jan. 2022. ISSN 2469-990X. doi: 10.1103/PhysRevFluids.7.014606. URL https://link.aps.org/doi/10.1103/PhysRevFluids.7.014606.
  29. P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5–28, Aug. 2010. ISSN 1469-7645, 0022-1120. doi: 10.1017/S0022112010001217. URL https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4. Publisher: Cambridge University Press.
  30. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3-4):271–304, Dec. 2005. ISSN 01672789. doi: 10.1016/j.physd.2005.10.007. URL https://linkinghub.elsevier.com/retrieve/pii/S0167278905004446.
  31. High–Reynolds Number Wall Turbulence. Annual Review of Fluid Mechanics, 43(1):353–375, Jan. 2011. ISSN 0066-4189, 1545-4479. doi: 10.1146/annurev-fluid-122109-160753. URL https://www.annualreviews.org/doi/10.1146/annurev-fluid-122109-160753.
  32. K. Taira and T. Colonius. The immersed boundary method: A projection approach. Journal of Computational Physics, 225(2):2118–2137, 2007. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2007.03.005. URL https://www.sciencedirect.com/science/article/pii/S0021999107001234.
  33. Modal Analysis of Fluid Flows: An Overview. AIAA Journal, 55(12):4013–4041, Dec. 2017. ISSN 0001-1452, 1533-385X. doi: 10.2514/1.J056060. URL https://arc.aiaa.org/doi/10.2514/1.J056060.
  34. Modal Analysis of Fluid Flows: Applications and Outlook. AIAA Journal, 58(3):998–1022, Mar. 2020. ISSN 0001-1452, 1533-385X. doi: 10.2514/1.J058462. URL https://arc.aiaa.org/doi/10.2514/1.J058462.
  35. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 847:821–867, July 2018. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2018.283. URL https://www.cambridge.org/core/product/identifier/S0022112018002835/type/journal_article.
  36. A Database for Reduced-Complexity Modeling of Fluid Flows, June 2022. URL http://arxiv.org/abs/2206.11801. arXiv:2206.11801 [physics].
  37. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421, Nov. 2014. ISSN 2158-2491. doi: 10.3934/jcd.2014.1.391. URL https://www.aimsciences.org/en/article/doi/10.3934/jcd.2014.1.391. Publisher: Journal of Computational Dynamics.
  38. Lagrangian Reduced Order Modeling Using Finite Time Lyapunov Exponents. Fluids, 5(4):189, Dec. 2020. ISSN 2311-5521. doi: 10.3390/fluids5040189. URL https://www.mdpi.com/2311-5521/5/4/189. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com