Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Face-MLLM: A Large Face Perception Model (2410.20717v1)

Published 28 Oct 2024 in cs.CV

Abstract: Although multimodal LLMs (MLLMs) have achieved promising results on a wide range of vision-language tasks, their ability to perceive and understand human faces is rarely explored. In this work, we comprehensively evaluate existing MLLMs on face perception tasks. The quantitative results reveal that existing MLLMs struggle to handle these tasks. The primary reason is the lack of image-text datasets that contain fine-grained descriptions of human faces. To tackle this problem, we design a practical pipeline for constructing datasets, upon which we further build a novel multimodal large face perception model, namely Face-MLLM. Specifically, we re-annotate LAION-Face dataset with more detailed face captions and facial attribute labels. Besides, we re-formulate traditional face datasets using the question-answer style, which is fit for MLLMs. Together with these enriched datasets, we develop a novel three-stage MLLM training method. In the first two stages, our model learns visual-text alignment and basic visual question answering capability, respectively. In the third stage, our model learns to handle multiple specialized face perception tasks. Experimental results show that our model surpasses previous MLLMs on five famous face perception tasks. Besides, on our newly introduced zero-shot facial attribute analysis task, our Face-MLLM also presents superior performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.