Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Domain Specific Data Distillation and Multi-modal Embedding Generation (2410.20325v1)

Published 27 Oct 2024 in cs.LG and cs.SI

Abstract: The challenge of creating domain-centric embeddings arises from the abundance of unstructured data and the scarcity of domain-specific structured data. Conventional embedding techniques often rely on either modality, limiting their applicability and efficacy. This paper introduces a novel modeling approach that leverages structured data to filter noise from unstructured data, resulting in embeddings with high precision and recall for domain-specific attribute prediction. The proposed model operates within a Hybrid Collaborative Filtering (HCF) framework, where generic entity representations are fine-tuned through relevant item prediction tasks. Our experiments, focusing on the cloud computing domain, demonstrate that HCF-based embeddings outperform AutoEncoder-based embeddings (using purely unstructured data), achieving a 28% lift in precision and an 11% lift in recall for domain-specific attribute prediction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.