Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Deep Learning Based Dense Retrieval: A Comparative Study (2410.20315v1)

Published 27 Oct 2024 in cs.CL and cs.AI

Abstract: Dense retrievers have achieved state-of-the-art performance in various information retrieval tasks, but their robustness against tokenizer poisoning remains underexplored. In this work, we assess the vulnerability of dense retrieval systems to poisoned tokenizers by evaluating models such as BERT, Dense Passage Retrieval (DPR), Contriever, SimCSE, and ANCE. We find that supervised models like BERT and DPR experience significant performance degradation when tokenizers are compromised, while unsupervised models like ANCE show greater resilience. Our experiments reveal that even small perturbations can severely impact retrieval accuracy, highlighting the need for robust defenses in critical applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets