Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts (2410.19852v1)

Published 22 Oct 2024 in cs.LG, cs.AI, cs.GT, and cs.NE

Abstract: Reinforcement learning (RL) has been successfully applied to solve the problem of finding obstacle-free paths for autonomous agents operating in stochastic and uncertain environments. However, when the underlying stochastic dynamics of the environment experiences drastic distribution shifts, the optimal policy obtained in the trained environment may be sub-optimal or may entirely fail in helping find goal-reaching paths for the agent. Approaches like domain randomization and robust RL can provide robust policies, but typically assume minor (bounded) distribution shifts. For substantial distribution shifts, retraining (either with a warm-start policy or from scratch) is an alternative approach. In this paper, we develop a novel approach called {\em Evolutionary Robust Policy Optimization} (ERPO), an adaptive re-training algorithm inspired by evolutionary game theory (EGT). ERPO learns an optimal policy for the shifted environment iteratively using a temperature parameter that controls the trade off between exploration and adherence to the old optimal policy. The policy update itself is an instantiation of the replicator dynamics used in EGT. We show that under fairly common sparsity assumptions on rewards in such environments, ERPO converges to the optimal policy in the shifted environment. We empirically demonstrate that for path finding tasks in a number of environments, ERPO outperforms several popular RL and deep RL algorithms (PPO, A3C, DQN) in many scenarios and popular environments. This includes scenarios where the RL algorithms are allowed to train from scratch in the new environment, when they are retrained on the new environment, or when they are used in conjunction with domain randomization. ERPO shows faster policy adaptation, higher average rewards, and reduced computational costs in policy adaptation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube