Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimistic Distributionally Robust Policy Optimization (2006.07815v1)

Published 14 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO), as the widely employed policy based reinforcement learning (RL) methods, are prone to converge to a sub-optimal solution as they limit the policy representation to a particular parametric distribution class. To address this issue, we develop an innovative Optimistic Distributionally Robust Policy Optimization (ODRPO) algorithm, which effectively utilizes Optimistic Distributionally Robust Optimization (DRO) approach to solve the trust region constrained optimization problem without parameterizing the policies. Our algorithm improves TRPO and PPO with a higher sample efficiency and a better performance of the final policy while attaining the learning stability. Moreover, it achieves a globally optimal policy update that is not promised in the prevailing policy based RL algorithms. Experiments across tabular domains and robotic locomotion tasks demonstrate the effectiveness of our approach.

Citations (12)

Summary

We haven't generated a summary for this paper yet.