Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training (2410.19779v1)

Published 14 Oct 2024 in eess.SP and cs.LG

Abstract: Electroencephalogram (EEG) signals are pivotal in providing insights into spontaneous brain activity, highlighting their significant importance in neuroscience research. However, the exploration of versatile EEG models is constrained by diverse data formats, outdated pre-training paradigms, and limited transfer learning methods, only leading to specialist models on single dataset. In this paper, we introduce EEGPT, the first generalist EEG foundation model designed to address these challenges. First, we propose an electrode-wise modeling strategy that treats each electrode as a fundamental unit, enabling the integration of diverse EEG datasets collected from up to 138 electrodes, amassing 37.5M pre-training samples. Second, we develop the first autoregressive EEG pre-trained model, moving away from traditional masked autoencoder approaches to a next signal prediction task that better captures the sequential and temporal dependencies of EEG data. We also explore scaling laws with model up to 1.1B parameters: the largest in EEG research to date. Third, we introduce a multi-task transfer learning paradigm using a learnable electrode graph network shared across tasks, which for the first time confirms multi-task compatibility and synergy. As the first generalist EEG foundation model, EEGPT shows broad compatibility with various signal acquisition devices, subjects, and tasks. It supports up to 138 electrodes and any combination thereof as input. Furthermore, we simultaneously evaluate it on 5 distinct tasks across 12 benchmarks. EEGPT consistently outperforms existing specialist models across all downstream tasks, with its effectiveness further validated through extensive ablation studies. This work sets a new direction for generalist EEG modeling, offering improved scalability, transferability, and adaptability for a wide range of EEG applications. The code and models will be released.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com