Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling (2409.12454v1)

Published 19 Sep 2024 in cs.LG, cs.AI, and eess.SP

Abstract: Electroencephalography (EEG) is a vital tool to measure and record brain activity in neuroscience and clinical applications, yet its potential is constrained by signal heterogeneity, low signal-to-noise ratios, and limited labeled datasets. In this paper, we propose FoME (Foundation Model for EEG), a novel approach using adaptive temporal-lateral attention scaling to address above-mentioned challenges. FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps. Our model introduces two key innovations: a time-frequency fusion embedding technique and an adaptive time-lateral attention scaling (ATLAS) mechanism. These components synergistically capture complex temporal and spectral EEG dynamics, enabling FoME to adapt to varying patterns across diverse data streams and facilitate robust multi-channel modeling. Evaluations across four downstream tasks demonstrate FoME's superior performance in classification and forecasting applications, consistently achieving state-of-the-art results. To conclude, FoME establishes a new paradigm for EEG analysis, offering a versatile foundation that advances brain-computer interfaces, clinical diagnostics, and cognitive research across neuroscience and related fields. Our code will be available at https://github.com/1061413241/FoME.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets