Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum optimization for Nonlinear Model Predictive Control (2410.19467v2)

Published 25 Oct 2024 in eess.SY, cs.SY, and quant-ph

Abstract: Nonlinear Model Predictive Control (NMPC) is a general and flexible control approach, used in many industrial contexts, and is based on the online solution of a nonlinear optimization problem. This operation requires in general a high computational cost, which may compromise the NMPC implementation in ``fast'' applications, especially if a large number variables is involved. To overcome this issue, we propose a quantum computing approach for the solution of the NMPC optimization problem. Assuming the availability of an efficient quantum computer, the approach has the potential to considerably decrease the computational time and/or enhance the solution quality compared to classical algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.
  2. R. Findeisen and F. Allgower, “An introduction to nonlinear model predictive control,” in 21st Benelux Meeting on Systems and Control, (Veldhoven, The Netherlands), pp. 1–23, 2002.
  3. E. Camacho and C. Bordons, Model Predictive Control. Springer, 2007.
  4. 2019.
  5. D. Inoue and H. Yoshida, “Model predictive control for finite input systems using the d-wave quantum annealer,” Scientific Reports, vol. 10, 2020.
  6. F. D. Grossi and C. Circi, “Nonlinear model predictive control leveraging quantum-inspired optimization in the three body problem with uncertainty,” Acta Astronautica, vol. 205, 2023.
  7. T. S. Humble, H. Thapliyal, E. Munoz-Coreas, F. A. Mohiyaddin, and R. S. Bennink, “Quantum computing circuits and devices,” IEEE Design & Test, vol. 36, no. 3, pp. 69–94, 2019.
  8. S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Applied Physics Reviews, vol. 6, no. 4, 2019.
  9. N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer Scientists. Cambridge University Press, 2008.
  10. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 10th anniversary edition ed., 2010.
  11. S. Aaronson, Quantum Computing Since Democritus. Cambridge University Press, 2013.
  12. J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
  13. T. Albash and D. A. Lidar, “Demonstration of a scaling advantage for a quantum annealer over simulated annealing,” Physical Review X, vol. 8, no. 3, p. 031016, 2018.
  14. S. Boixo, G. Ortiz, and R. Somma, “Fast quantum methods for optimization,” The European Physical Journal Special Topics, vol. 224, pp. 35–49, 2 2015.
  15. P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver, “Perspectives of quantum annealing: Methods and implementations,” Reports on Progress in Physics, vol. 83, no. 5, p. 054401, 2020.
  16. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.
  17. S. Morita and H. Nishimori, “Mathematical foundation of quantum annealing,” Journal of Mathematical Physics, vol. 49, p. 125210, 12 2008.
  18. R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari, “Move blocking strategies in receding horizon control,” Journal of Process Control, vol. 17, no. 6, pp. 563–570, 2007.
  19. M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al., “Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011.
  20. “D-Wave Systems, www.dwavesys.com.”
  21. T. Zanca and G. E. Santoro, “Quantum annealing speedup over simulated annealing on random ising chains,” Phys. Rev. B, vol. 93, p. 224431, Jun 2016.
  22. P. Xavier, P. Ripper, T. Andrade, J. Garcia, N. Maculan, and D. B. Neira, “Qubo.jl: A julia ecosystem for quadratic unconstrained binary optimization,” https://arxiv.org/abs/2307.02577, 2023.
  23. T. Gabor, M. L. Rosenfeld, S. Feld, and C. Linnhoff-Popien, “How to approximate any objective function via quadratic unconstrained binary optimization,” https://arxiv.org/abs/2204.11035, 2022.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube