Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning (2410.17494v4)

Published 23 Oct 2024 in eess.IV and cs.CV

Abstract: The classification of medical images is a pivotal aspect of disease diagnosis, often enhanced by deep learning techniques. However, traditional approaches typically focus on unimodal medical image data, neglecting the integration of diverse non-image patient data. This paper proposes a novel Cross-Graph Modal Contrastive Learning (CGMCL) framework for multimodal structured data from different data domains to improve medical image classification. The model effectively integrates both image and non-image data by constructing cross-modality graphs and leveraging contrastive learning to align multimodal features in a shared latent space. An inter-modality feature scaling module further optimizes the representation learning process by reducing the gap between heterogeneous modalities. The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset. Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction. Additionally, the method shows superior performance in multi-class melanoma classification. The CGMCL framework provides valuable insights into medical image classification while offering improved disease interpretability and predictive capabilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. J. N. Acosta, G. J. Falcone, P. Rajpurkar, and E. J. Topol, “Multimodal biomedical ai,” Nature Medicine, vol. 28, no. 9, pp. 1773–1784, 2022.
  2. F. Zhou and H. Chen, “Cross-modal translation and alignment for survival analysis,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 21 485–21 494.
  3. X. He, Y. Wang, S. Zhao, and X. Chen, “Co-attention fusion network for multimodal skin cancer diagnosis,” Pattern Recognition, vol. 133, p. 108990, 2023.
  4. X. Yang, A. Chen, N. PourNejatian, H. C. Shin, K. E. Smith, C. Parisien, C. Compas, C. Martin, A. B. Costa, M. G. Flores et al., “A large language model for electronic health records,” NPJ digital medicine, vol. 5, no. 1, p. 194, 2022.
  5. M. Rupp, O. Peter, and T. Pattipaka, “Exbehrt: Extended transformer for electronic health records,” in International Workshop on Trustworthy Machine Learning for Healthcare.   Springer, 2023, pp. 73–84.
  6. W. Shao, S. P. Rowe, and Y. Du, “Artificial intelligence in single photon emission computed tomography (spect) imaging: a narrative review,” Annals of Translational Medicine, vol. 9, no. 9, 2021.
  7. H. Choi, S. Ha, H. J. Im, S. H. Paek, and D. S. Lee, “Refining diagnosis of parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging,” NeuroImage: Clinical, vol. 16, pp. 586–594, 2017.
  8. A. Kurmi, S. Biswas, S. Sen, A. Sinitca, D. Kaplun, and R. Sarkar, “An ensemble of cnn models for parkinson’s disease detection using datscan images,” Diagnostics, vol. 12, no. 5, p. 1173, 2022.
  9. H. Chen, F. Zhuang, L. Xiao, L. Ma, H. Liu, R. Zhang, H. Jiang, and Q. He, “Ama-gcn: adaptive multi-layer aggregation graph convolutional network for disease prediction,” arXiv preprint arXiv:2106.08732, 2021.
  10. H. Lu and S. Uddin, “A weighted patient network-based framework for predicting chronic diseases using graph neural networks,” Scientific reports, vol. 11, no. 1, p. 22607, 2021.
  11. C. Mao, L. Yao, and Y. Luo, “Imagegcn: Multi-relational image graph convolutional networks for disease identification with chest x-rays,” IEEE transactions on medical imaging, vol. 41, no. 8, pp. 1990–2003, 2022.
  12. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in International Conference on Learning Representations (ICLR), 2017.
  13. C. Wang, X. Sun, F. Zhang, Y. Yu, and Y. Wang, “Dae-gcn: Identifying disease-related features for disease prediction,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24.   Springer, 2021, pp. 43–52.
  14. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” arXiv: Machine Learning, 2017.
  15. S. Zheng, Z. Zhu, Z. Liu, Z. Guo, Y. Liu, Y. Yang, and Y. Zhao, “Multi-modal graph learning for disease prediction,” IEEE Transactions on Medical Imaging, vol. 41, no. 9, pp. 2207–2216, 2022.
  16. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  17. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9729–9738.
  18. W. Huang, “Multimodal contrastive learning and tabular attention for automated alzheimer’s disease prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 2473–2482.
  19. L. Liu, J. Lyu, S. Liu, X. Tang, S. S. Chandra, and F. A. Nasrallah, “Triformer: A multi-modal transformer framework for mild cognitive impairment conversion prediction,” in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2023, pp. 1–4.
  20. D. Taylor, S. E. Spasov, and P. Liò, “Co-attentive cross-modal deep learning for medical evidence synthesis and decision making.” arXiv: Quantitative Methods, 2019.
  21. R. J. Chen, M. Y. Lu, W.-H. Weng, T. Y. Chen, D. F. Williamson, T. Manz, M. Shady, and F. Mahmood, “Multimodal co-attention transformer for survival prediction in gigapixel whole slide images,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 4015–4025.
  22. C. Cui, H. Yang, Y. Wang, S. Zhao, Z. Asad, L. A. Coburn, K. T. Wilson, B. A. Landman, and Y. Huo, “Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review,” Progress in Biomedical Engineering, vol. 5, no. 2, p. 022001, 2023.
  23. R. Li, J. Yao, X. Zhu, Y. Li, and J. Huang, “Graph cnn for survival analysis on whole slide pathological images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2018, pp. 174–182.
  24. R. J. Chen, M. Y. Lu, M. Shaban, C. Chen, T. Y. Chen, D. F. Williamson, and F. Mahmood, “Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24.   Springer, 2021, pp. 339–349.
  25. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.
  26. J.-E. Ding, C.-H. Chu, M.-N. L. Huang, and C.-C. Hsu, “Dopamine transporter spect image classification for neurodegenerative parkinsonism via diffusion maps and machine learning classifiers,” Annual Conference on Medical Image Understanding and Analysis, 2021.
  27. J. E. Brogley, “Datquant: The future of diagnosing parkinson disease,” Journal of Nuclear Medicine Technology, 2019.
  28. J. Kawahara, S. Daneshvar, G. Argenziano, and G. Hamarneh, “Seven-point checklist and skin lesion classification using multitask multimodal neural nets,” IEEE journal of biomedical and health informatics, vol. 23, no. 2, pp. 538–546, 2018.
  29. S.-Y. Hsu, H.-C. Lin, T.-B. Chen, W.-C. Du, Y.-H. Hsu, Y. Wu, Y.-C. Wu, P.-W. Tu, Y.-H. Huang, and H.-Y. Chen, “Feasible classified models for parkinson disease from 99mtc-trodat-1 spect imaging.” Sensors, 2019.
  30. Y. Freund, R. E. Schapire et al., “Experiments with a new boosting algorithm,” in icml, vol. 96.   Citeseer, 1996, pp. 148–156.
  31. D. Taylor, S. Spasov, and P. Liò, “Co-attentive cross-modal deep learning for medical evidence synthesis and decision making,” arXiv preprint arXiv:1909.06442, 2019.
  32. K. Li, C. Chen, W. Cao, H. Wang, S. Han, R. Wang, Z. Ye, Z. Wu, W. Wang, L. Cai et al., “Deaf: A multimodal deep learning framework for disease prediction,” Computers in Biology and Medicine, vol. 156, p. 106715, 2023.
  33. L. Bi, D. D. Feng, M. Fulham, and J. Kim, “Multi-label classification of multi-modality skin lesion via hyper-connected convolutional neural network,” Pattern Recognition, vol. 107, p. 107502, 2020.
  34. Y. Wang, Y. Feng, L. Zhang, J. T. Zhou, Y. Liu, R. S. M. Goh, and L. Zhen, “Adversarial multimodal fusion with attention mechanism for skin lesion classification using clinical and dermoscopic images,” Medical Image Analysis, vol. 81, p. 102535, 2022.
  35. P. Tang, X. Yan, Y. Nan, S. Xiang, S. Krammer, and T. Lasser, “Fusionm4net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification,” Medical Image Analysis, vol. 76, p. 102307, 2022.
  36. H. Khachnaoui, B. Chikhaoui, N. Khlifa, and R. Mabrouk, “Enhanced parkinson’s disease diagnosis through convolutional neural network models applied to spect datscan images,” IEEE Access, 2023.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube