Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Risk-Averse Model Predictive Control for Racing in Adverse Conditions (2410.17183v1)

Published 22 Oct 2024 in cs.RO, cs.SY, eess.SY, and math.OC

Abstract: Model predictive control (MPC) algorithms can be sensitive to model mismatch when used in challenging nonlinear control tasks. In particular, the performance of MPC for vehicle control at the limits of handling suffers when the underlying model overestimates the vehicle's capabilities. In this work, we propose a risk-averse MPC framework that explicitly accounts for uncertainty over friction limits and tire parameters. Our approach leverages a sample-based approximation of an optimal control problem with a conditional value at risk (CVaR) constraint. This sample-based formulation enables planning with a set of expressive vehicle dynamics models using different tire parameters. Moreover, this formulation enables efficient numerical resolution via sequential quadratic programming and GPU parallelization. Experiments on a Lexus LC 500 show that risk-averse MPC unlocks reliable performance, while a deterministic baseline that plans using a single dynamics model may lose control of the vehicle in adverse road conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. T. P. Weber and J. C. Gerdes, “Modeling and control for dynamic drifting trajectories,” IEEE Transactions on Intelligent Vehicles, 2023.
  2. J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mangharam, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,” IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 458–488, 2022.
  3. J. K. Subosits and J. C. Gerdes, “From the racetrack to the road: Real-time trajectory replanning for autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 309–320, 2019.
  4. A. Wischnewski, T. Herrmann, F. Werner, and B. Lohmann, “A tube-MPC approach to autonomous multi-vehicle racing on high-speed ovals,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 368–378, 2023.
  5. A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1:43 scale RC cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 2014.
  6. J. Dallas, M. Thompson, J. Goh, and A. Balachandran, “A hierarchical adaptive nonlinear model predictive control approach for maximizing tire force usage in autonomous vehicles,” Journal of Field Robotics, vol. 3, no. 1, pp. 222–242, 2023.
  7. T. P. Weber, R. K. Aggarwal, and J. C. Gerdes, “Human-inspired autonomous racing in low friction environments,” IEEE Transactions on Intelligent Vehicles, pp. 1–14, 2024.
  8. J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predictive control for autonomous racing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.
  9. A. Liniger, X. Zhang, P. Aeschbach, A. Georghiou, and J. Lygeros, “Racing miniature cars: Enhancing performance using stochastic MPC and disturbance feedback,” in American Control Conference, 2017, pp. 5642–5647.
  10. I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-CIO: Full-body dynamic motion planning that transfers to physical humanoids,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2015.
  11. I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and D. Fox, “Model-based generalization under parameter uncertainty using path integral control,” IEEE Robotics and Automation Letters, 2020.
  12. T. Brudigam, A. Capone, S. Hirche, D. Wollherr, and M. Leibold, “Gaussian process-based stochastic model predictive control for overtaking in autonomous racing,” 2021, available at https://arxiv.org/abs/2105.12236.
  13. R. Dyro, J. Harrison, A. Sharma, and M. Pavone, “Particle MPC for uncertain and learning-based control,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2021.
  14. T. Lew and M. Bonalli, R. Pavone, “Exact characterization of the convex hulls of reachable sets,” in Proc. IEEE Conf. on Decision and Control, 2023.
  15. M. Prajapat, A. Lahr, J. Köhler, A. Krause, and M. N. Zeilinger, “Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework,” in Proc. IEEE Conf. on Decision and Control, 2024.
  16. T. Lew, R. Bonalli, and M. Pavone, “Risk-averse trajectory optimization via sample average approximation,” IEEE Robotics and Automation Letters, vol. 9, no. 2, pp. 1500–1507, 2024.
  17. J. Y. Goh, T. Goel, and C. J. Gerdes, “Toward automated vehicle control beyond the stability limits: Drifting along a general path,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 142, no. 2, 2019.
  18. T. Kobayashi, T. P. Weber, and J. C. Gerdes, “Trajectory planning using tire thermodynamics for automated drifting,” in IEEE Intelligent Vehicles Symposium, 2024.
  19. E. Fiala, “Seitenkraften am rollenden luftreifen,” VdI Zeitschrift, vol. 96, pp. 973–979, 1954.
  20. J. Svendenius, “Tire modeling and friction estimation,” Ph.D. dissertation, Lund University, 2007.
  21. R. Quirynen and K. Berntorp, “Uncertainty propagation by linear regression kalman filters for stochastic NMPC,” IFAC-Papers Online, vol. 54, no. 6, pp. 76–82, 2021.
  22. T. Lew, R. Bonalli, and M. Pavone, “Chance-constrained sequential convex programming for robust trajectory optimization,” in European Control Conference, 2020.
  23. C. Leparoux, R. Bonalli, B. Hérissé, and F. Jean, “Statistical linearization for robust motion planning,” Systems & Control Letters, vol. 189, p. 105825, 2024.
  24. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018.
  25. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.
  26. M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear optimization in optimal feedback control,” SIAM Journal on Control and Optimization, vol. 43, no. 5, pp. 1714–1736, 2005.
  27. OxTS, “User manual: NCOM data format for the efficient communication of navigation measurements,” 2022.
  28. M. Schubiger, G. Banjac, and J. Lygeros, “GPU acceleration of ADMM for large-scale quadratic programming,” Journal of Parallel and Distributed Computing, vol. 144, pp. 55–67, 2020.
  29. A. L. Bishop, J. Z. Zhang, S. Gurumurthy, K. Tracy, and Z. Manchester, “ReLU-QP: A GPU-accelerated quadratic programming solver for model-predictive control,” in Proc. IEEE Conf. on Robotics and Automation, 2024.
  30. E. Adabag, M. Atal, W. Gerard, and B. Plancher, “MPCGPU: Real-time nonlinear model predictive control through preconditioned conjugate gradient on the GPU,” in Proc. IEEE Conf. on Robotics and Automation, 2024.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube