Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Human-LLM Hybrid Text Answer Aggregation for Crowd Annotations (2410.17099v1)

Published 22 Oct 2024 in cs.CL, cs.HC, and cs.LG

Abstract: The quality is a crucial issue for crowd annotations. Answer aggregation is an important type of solution. The aggregated answers estimated from multiple crowd answers to the same instance are the eventually collected annotations, rather than the individual crowd answers themselves. Recently, the capability of LLMs on data annotation tasks has attracted interest from researchers. Most of the existing studies mainly focus on the average performance of individual crowd workers; several recent works studied the scenarios of aggregation on categorical labels and LLMs used as label creators. However, the scenario of aggregation on text answers and the role of LLMs as aggregators are not yet well-studied. In this paper, we investigate the capability of LLMs as aggregators in the scenario of close-ended crowd text answer aggregation. We propose a human-LLM hybrid text answer aggregation method with a Creator-Aggregator Multi-Stage (CAMS) crowdsourcing framework. We make the experiments based on public crowdsourcing datasets. The results show the effectiveness of our approach based on the collaboration of crowd workers and LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube