Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

ReLU neural network approximation to piecewise constant functions (2410.16506v1)

Published 21 Oct 2024 in math.FA, cs.LG, cs.NA, and math.NA

Abstract: This paper studies the approximation property of ReLU neural networks (NNs) to piecewise constant functions with unknown interfaces in bounded regions in $\mathbb{R}d$. Under the assumption that the discontinuity interface $\Gamma$ may be approximated by a connected series of hyperplanes with a prescribed accuracy $\varepsilon >0$, we show that a three-layer ReLU NN is sufficient to accurately approximate any piecewise constant function and establish its error bound. Moreover, if the discontinuity interface is convex, an analytical formula of the ReLU NN approximation with exact weights and biases is provided.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.