Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KTCR: Improving Implicit Hate Detection with Knowledge Transfer driven Concept Refinement (2410.15314v2)

Published 20 Oct 2024 in cs.CL

Abstract: The constant shifts in social and political contexts, driven by emerging social movements and political events, lead to new forms of hate content and previously unrecognized hate patterns that machine learning models may not have captured. Some recent literature proposes data augmentation-based techniques to enrich existing hate datasets by incorporating samples that reveal new implicit hate patterns. This approach aims to improve the model's performance on out-of-domain implicit hate instances. It is observed, that further addition of more samples for augmentation results in the decrease of the performance of the model. In this work, we propose a Knowledge Transfer-driven Concept Refinement method that distills and refines the concepts related to implicit hate samples through novel prototype alignment and concept losses, alongside data augmentation based on concept activation vectors. Experiments with several publicly available datasets show that incorporating additional implicit samples reflecting new hate patterns through concept refinement enhances the model's performance, surpassing baseline results while maintaining cross-dataset generalization capabilities.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.