Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Out-of-distribution Robust Optimization (2410.14899v3)

Published 18 Oct 2024 in math.OC

Abstract: In this paper, we consider the contextual robust optimization problem under an out-of-distribution setting. The contextual robust optimization problem considers a risk-sensitive objective function for an optimization problem with the presence of a context vector (also known as covariates or side information) capturing related information. While the existing works mainly consider the in-distribution setting, and the resultant robustness achieved is in an out-of-sample sense, our paper studies an out-of-distribution setting where there can be a difference between the test environment and the training environment where the data are collected. We propose methods that handle this out-of-distribution setting, and the key relies on a density ratio estimation for the distribution shift. We show that additional structures such as covariate shift and label shift are not only helpful in defending distribution shift but also necessary in avoiding non-trivial solutions compared to other principled methods such as distributionally robust optimization. We also illustrate how the covariates can be useful in this procedure. Numerical experiments generate more intuitions and demonstrate that the proposed methods can help avoid over-conservative solutions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.