Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting K-means for Big Data by Fusing Data Streaming with Global Optimization (2410.14548v1)

Published 18 Oct 2024 in cs.LG, cs.AI, and math.OC

Abstract: K-means clustering is a cornerstone of data mining, but its efficiency deteriorates when confronted with massive datasets. To address this limitation, we propose a novel heuristic algorithm that leverages the Variable Neighborhood Search (VNS) metaheuristic to optimize K-means clustering for big data. Our approach is based on the sequential optimization of the partial objective function landscapes obtained by restricting the Minimum Sum-of-Squares Clustering (MSSC) formulation to random samples from the original big dataset. Within each landscape, systematically expanding neighborhoods of the currently best (incumbent) solution are explored by reinitializing all degenerate and a varying number of additional centroids. Extensive and rigorous experimentation on a large number of real-world datasets reveals that by transforming the traditional local search into a global one, our algorithm significantly enhances the accuracy and efficiency of K-means clustering in big data environments, becoming the new state of the art in the field.

Summary

We haven't generated a summary for this paper yet.