Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review (2310.09819v3)

Published 15 Oct 2023 in cs.LG, cs.AI, and math.OC

Abstract: This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to overcome these issues, including parallelization, approximation, and sampling methods. The authors evaluate the performance of various clustering techniques on a large number of benchmark datasets, comparing them according to the dominance criterion provided by the "less is more" approach (LIMA), i.e., simultaneously along the dimensions of speed, clustering quality, and simplicity. The results show that different techniques are more suitable for different types of datasets and provide insights into the trade-offs between speed and accuracy in K-means clustering for big data. Overall, the paper offers a comprehensive guide for practitioners and researchers on how to optimize K-means for big data applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.