Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 26 tok/s Pro
2000 character limit reached

On Diffusion Models for Multi-Agent Partial Observability: Shared Attractors, Error Bounds, and Composite Flow (2410.13953v3)

Published 17 Oct 2024 in cs.LG

Abstract: Multiagent systems grapple with partial observability (PO), and the decentralized POMDP (Dec-POMDP) model highlights the fundamental nature of this challenge. Whereas recent approaches to addressing PO have appealed to deep learning models, providing a rigorous understanding of how these models and their approximation errors affect agents' handling of PO and their interactions remain a challenge. In addressing this challenge, we investigate reconstructing global states from local action-observation histories in Dec-POMDPs using diffusion models. We first find that diffusion models conditioned on local history represent possible states as stable fixed points. In collectively observable (CO) Dec-POMDPs, individual diffusion models conditioned on agents' local histories share a unique fixed point corresponding to the global state, while in non-CO settings, shared fixed points yield a distribution of possible states given joint history. We further find that, with deep learning approximation errors, fixed points can deviate from true states and the deviation is negatively correlated to the Jacobian rank. Inspired by this low-rank property, we bound a deviation by constructing a surrogate linear regression model that approximates the local behavior of a diffusion model. With this bound, we propose a \emph{composite diffusion process} iterating over agents with theoretical convergence guarantees to the true state.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com