Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing the support of semiclassical measures for higher-dimensional cat maps (2410.13449v1)

Published 17 Oct 2024 in math.AP, math-ph, math.MP, math.NT, and math.SP

Abstract: Quantum cat maps are toy models in quantum chaos associated to hyperbolic symplectic matrices $A\in \operatorname{Sp}(2n,\mathbb{Z})$. The macroscopic limits of sequences of eigenfunctions of a quantum cat map are characterized by semiclassical measures on the torus $\mathbb{R}{2n}/\mathbb{Z}{2n}$. We show that if the characteristic polynomial of every power $Ak$ is irreducible over the rationals, then every semiclassical measure has full support. The proof uses an earlier strategy of Dyatlov-J\'ez\'equel [arXiv:2108.10463] and the higher-dimensional fractal uncertainty principle of Cohen [arXiv:2305.05022]. Our irreducibility condition is generically true, in fact we show that asymptotically for $100\%$ of matrices $A$, the Galois group of the characteristic polynomial of $A$ is $S_2 \wr S_n$. When the irreducibility condition does not hold, we show that a semiclassical measure cannot be supported on a finite union of parallel non-coisotropic subtori. On the other hand, we give examples of semiclassical measures supported on the union of two transversal symplectic subtori for $n=2$, inspired by the work of Faure-Nonnenmacher-De Bi`evre [arXiv:nlin/0207060] in the case $n=1$. This is complementary to the examples by Kelmer [arXiv:math-ph/0510079] of semiclassical measures supported on a single coisotropic subtorus.

Citations (2)

Summary

We haven't generated a summary for this paper yet.