Papers
Topics
Authors
Recent
2000 character limit reached

Semiclassical measures for higher dimensional quantum cat maps

Published 24 Aug 2021 in math.AP and math.SP | (2108.10463v2)

Abstract: Consider a quantum cat map $M$ associated to a matrix $A\in\mathop{\mathrm{Sp}}(2n,\mathbb Z)$, which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of $M$ on any nonempty open set in the position-frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue of $A$ of largest absolute value and (2) the characteristic polynomial of $A$ is irreducible over the rationals. This is similar to previous work [arXiv:1705.05019], [arXiv:1906.08923] on negatively curved surfaces and [arXiv:2103.06633] on quantum cat maps with $n=1$, but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.