Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Driven by Brownian motion Cox-Ingersoll-Ross and squared Bessel processes: interaction and phase transition (2410.13231v1)

Published 17 Oct 2024 in math.PR

Abstract: This paper studies two related stochastic processes driven by Brownian motion: the Cox-Ingersoll-Ross (CIR) process and the Bessel process. We investigate their shared and distinct properties, focusing on time-asymptotic growth rates, distance between the processes in integral norms, and parameter estimation. The squared Bessel process is shown to be a phase transition of the CIR process and can be approximated by a sequence of CIR processes. Differences in stochastic stability are also highlighted, with the Bessel process displaying instability, while the CIR process remains ergodic and stable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com