Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Standard and fractional reflected Ornstein-Uhlenbeck processes as the limits of square roots of Cox-Ingersoll-Ross processes (2109.13619v1)

Published 28 Sep 2021 in math.PR

Abstract: In this paper, we establish a new connection between Cox-Ingersoll-Ross (CIR) and reflected Ornstein-Uhlenbeck (ROU) models driven by either a standard Wiener process or a fractional Brownian motion with $H>\frac{1}{2}$. We prove that, with probability 1, the square root of the CIR process converges uniformly on compacts to the ROU process as the mean reversion parameter tends to either $\sigma2/4$ (in the standard case) or to $0$ (in the fractional case). This also allows to obtain a new representation of the reflection function of the ROU as the limit of integral functionals of the CIR processes. The results of the paper are illustrated by simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.