Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimizing 3D Geometry Reconstruction from Implicit Neural Representations (2410.12725v1)

Published 16 Oct 2024 in cs.CV, cs.GR, and cs.LG

Abstract: Implicit neural representations have emerged as a powerful tool in learning 3D geometry, offering unparalleled advantages over conventional representations like mesh-based methods. A common type of INR implicitly encodes a shape's boundary as the zero-level set of the learned continuous function and learns a mapping from a low-dimensional latent space to the space of all possible shapes represented by its signed distance function. However, most INRs struggle to retain high-frequency details, which are crucial for accurate geometric depiction, and they are computationally expensive. To address these limitations, we present a novel approach that both reduces computational expenses and enhances the capture of fine details. Our method integrates periodic activation functions, positional encodings, and normals into the neural network architecture. This integration significantly enhances the model's ability to learn the entire space of 3D shapes while preserving intricate details and sharp features, areas where conventional representations often fall short.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.