Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting (2410.12593v2)

Published 16 Oct 2024 in cs.LG and cs.AI

Abstract: The widespread deployment of sensing devices leads to a surge in data for spatio-temporal forecasting applications such as traffic flow, air quality, and wind energy. Although spatio-temporal graph neural networks have achieved success in modeling various static spatio-temporal forecasting scenarios, real-world spatio-temporal data are typically received in a streaming manner, and the network continuously expands with the installation of new sensors. Thus, spatio-temporal forecasting in streaming scenarios faces dual challenges: the inefficiency of retraining models over newly arrived data and the detrimental effects of catastrophic forgetting over long-term history. To address these challenges, we propose a novel prompt tuning-based continuous forecasting method, following two fundamental tuning principles guided by empirical and theoretical analysis: expand and compress, which effectively resolve the aforementioned problems with lightweight tuning parameters. Specifically, we integrate the base spatio-temporal graph neural network with a continuous prompt pool, utilizing stored prompts (i.e., few learnable parameters) in memory, and jointly optimize them with the base spatio-temporal graph neural network. This method ensures that the model sequentially learns from the spatio-temporal data stream to accomplish tasks for corresponding periods. Extensive experimental results on multiple real-world datasets demonstrate the multi-faceted superiority of our method over the state-of-the-art baselines, including effectiveness, efficiency, universality, etc.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)