Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Sharpness-Aware Black-Box Optimization (2410.12457v1)

Published 16 Oct 2024 in cs.LG and cs.AI

Abstract: Black-box optimization algorithms have been widely used in various machine learning problems, including reinforcement learning and prompt fine-tuning. However, directly optimizing the training loss value, as commonly done in existing black-box optimization methods, could lead to suboptimal model quality and generalization performance. To address those problems in black-box optimization, we propose a novel Sharpness-Aware Black-box Optimization (SABO) algorithm, which applies a sharpness-aware minimization strategy to improve the model generalization. Specifically, the proposed SABO method first reparameterizes the objective function by its expectation over a Gaussian distribution. Then it iteratively updates the parameterized distribution by approximated stochastic gradients of the maximum objective value within a small neighborhood around the current solution in the Gaussian distribution space. Theoretically, we prove the convergence rate and generalization bound of the proposed SABO algorithm. Empirically, extensive experiments on the black-box prompt fine-tuning tasks demonstrate the effectiveness of the proposed SABO method in improving model generalization performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.