Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On-the-fly Modulation for Balanced Multimodal Learning (2410.11582v1)

Published 15 Oct 2024 in cs.CV, cs.AI, cs.LG, and cs.MM

Abstract: Multimodal learning is expected to boost model performance by integrating information from different modalities. However, its potential is not fully exploited because the widely-used joint training strategy, which has a uniform objective for all modalities, leads to imbalanced and under-optimized uni-modal representations. Specifically, we point out that there often exists modality with more discriminative information, e.g., vision of playing football and sound of blowing wind. They could dominate the joint training process, resulting in other modalities being significantly under-optimized. To alleviate this problem, we first analyze the under-optimized phenomenon from both the feed-forward and the back-propagation stages during optimization. Then, On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies are proposed to modulate the optimization of each modality, by monitoring the discriminative discrepancy between modalities during training. Concretely, OPM weakens the influence of the dominant modality by dropping its feature with dynamical probability in the feed-forward stage, while OGM mitigates its gradient in the back-propagation stage. In experiments, our methods demonstrate considerable improvement across a variety of multimodal tasks. These simple yet effective strategies not only enhance performance in vanilla and task-oriented multimodal models, but also in more complex multimodal tasks, showcasing their effectiveness and flexibility. The source code is available at \url{https://github.com/GeWu-Lab/BML_TPAMI2024}.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.