Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rician Denoising Diffusion Probabilistic Models For Sodium Breast MRI Enhancement (2410.11511v1)

Published 15 Oct 2024 in eess.IV and cs.CV

Abstract: Sodium MRI is an imaging technique used to visualize and quantify sodium concentrations in vivo, playing a role in many biological processes and potentially aiding in breast cancer characterization. Sodium MRI, however, suffers from inherently low signal-to-noise ratios (SNR) and spatial resolution, compared with conventional proton MRI. A deep-learning method, the Denoising Diffusion Probabilistic Models (DDPM), has demonstrated success across a wide range of denoising tasks, yet struggles with sodium MRI's unique noise profile, as DDPM primarily targets Gaussian noise. DDPM can distort features when applied to sodium MRI. This paper advances the DDPM by introducing the Rician Denoising Diffusion Probabilistic Models (RDDPM) for sodium MRI denoising. RDDPM converts Rician noise to Gaussian noise at each timestep during the denoising process. The model's performance is evaluated using three non-reference image quality assessment metrics, where RDDPM consistently outperforms DDPM and other CNN-based denoising methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.