Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

O-Edit: Orthogonal Subspace Editing for Language Model Sequential Editing (2410.11469v1)

Published 15 Oct 2024 in cs.CL

Abstract: LLMs acquire knowledge during pre-training, but over time, this knowledge may become incorrect or outdated, necessitating updates after training. Knowledge editing techniques address this issue without the need for costly re-training. However, most existing methods are designed for single edits, and as the number of edits increases, they often cause a decline in the model's overall performance, posing significant challenges for sequential editing. To overcome this, we propose Orthogonal Subspace Editing, O-Edit. This algorithm orthogonalizes the direction of each knowledge update, minimizing interference between successive updates and reducing the impact of new updates on unrelated knowledge. Our approach does not require replaying previously edited data and processes each edit knowledge on time. It can perform thousands of edits on mainstream LLMs, achieving an average performance improvement that is 4.2 times better than existing methods while effectively preserving the model's performance on downstream tasks, all with minimal additional parameter overhead.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)