Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Quadratic Gating Functions in Mixture of Experts: A Statistical Insight (2410.11222v2)

Published 15 Oct 2024 in stat.ML and cs.LG

Abstract: Mixture of Experts (MoE) models are highly effective in scaling model capacity while preserving computational efficiency, with the gating network, or router, playing a central role by directing inputs to the appropriate experts. In this paper, we establish a novel connection between MoE frameworks and attention mechanisms, demonstrating how quadratic gating can serve as a more expressive and efficient alternative. Motivated by this insight, we explore the implementation of quadratic gating within MoE models, identifying a connection between the self-attention mechanism and the quadratic gating. We conduct a comprehensive theoretical analysis of the quadratic softmax gating MoE framework, showing improved sample efficiency in expert and parameter estimation. Our analysis provides key insights into optimal designs for quadratic gating and expert functions, further elucidating the principles behind widely used attention mechanisms. Through extensive evaluations, we demonstrate that the quadratic gating MoE outperforms the traditional linear gating MoE. Moreover, our theoretical insights have guided the development of a novel attention mechanism, which we validated through extensive experiments. The results demonstrate its favorable performance over conventional models across various tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com